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Linear models

» We consider the case x € R? throughout this chapter

» Function f: RY — R is linear if for some w € R? it can be
written as

d
) =w-x=3 wx
j=1
and affine if for some w € R and a € R we can write
f(x)=w-x+a

» w is often called weight vector and a is called intercept (or
particularly in machine learning literature, bias)



Linear models (2)

» Linear model generally means using an affine function by itself
for regression, or as scoring function for classification

» The learning problem is to determine the parameters w and a
based on data

> Linear regression and classification have been extensively
studies in statistics



Univariate linear regression

» As warm-up, we consider linear regression in one-dimensional
cased =1

» We use square error and want to minimise it on training set
(X17y1)7 teey (men)

» Thus, we want to find a, w € R that minimise

n

E(w,a) = (v — (wx; + a))?

i=1

> This is known as ordinary least squares and can be motivated
as maximum likelihood estimate for (w, a) if we assume

Yi = wx; +a+mn;

where n; are i.i.d. Gaussian noise with zero mean



Univariate linear regression (2)

» We solve the minimisation problem by setting the partial
derivatives to zero

» We denote the solution by (W, 3)

» We have
8Ewa
- Z  — wi — 3)

and setting this to zero gives

=y — wX
where y = (1/n) > yi and x = (1/n) Y, x;

» This implies in particular that the point (x,¥) is on the line
y=wx+3

Q>



Univariate linear regression (3)

» Further,
0E(w, a) ‘
T = -2 E X,‘(_y,' — WX; — a)

i=1

» Plugging in a = 3 and setting the derivative to zero gives us

Zx,(y, — y+wkx)=0

from which we can solve

SN xi(yi — 7)
S ¥ xi(x — )

w =




Univariate linear regression (4)

» Since
n

n
> xyi—y)=x <ny - "5’) =0
i=1 i=1

and

0

n n
Zx(x,- —X) =X (Zx; — n>‘<>
i=1 i=1
we can finally rewrite this as
N _ _
2izi(xi —=X)(yvi —¥)
S (xi = %)

> Notice that we have W = 0, /0« Where 0,4 is sample
covariance between p and g:
1 n
Opa = 71 > (pi—B)(ai — @)

n

>

i=1



Useful trick

> In more general situation than univariate regression, it would
often be simpler to learn just linear functions and not worry
about the intercept term

> An easy trick for this is to replace each instance
x=(x1,...,x4) ERY by x' = (1,xq,...,xg) € RIF!

» Now an affine function f(x) = w - x + a in RY becomes linear
function g(x’) = w’ - x" where w' = (a, wy, ..., wy)

» If we write the set of instances x1,...,X, as an n X d matrix,
this means adding an extra column of ones

» This is known as using homogeneous coordinates (textbook p.
24)



Useful trick (2)

» For most part we now present algorithms for learning linear
functions (instead of affine)

> In practice, to run them on d-dimensional data, we add the
column of ones and run the algorithm in d + 1 dimensions

> The first component of w then gives the intercept

» However sometimes we might still want to treat the intercept
separately (for example in regularisation)



Multivariate linear regression

» We now move to the general case of learning a linear function
RY — R for arbitrary d

> As discussed above, we omit the intercept

» We still use the square loss, which is by far the most
commonly used loss for linear regression

» One potential problem with square loss is its sensitivity to
outliers

» one alternative is absolute loss ‘y — ?(X)‘

» computations become trickier with absolute loss



Multivariate linear regression (2)

» We assume matrix X € R"*? has n instances x; as its rows
and y € R" contains the corresponding labels y;

» We write
y =Xw+ €

where the residual €; = y; — w - x; indicates error that weight
vector w makes on data point (x;, y;)

» Our goal is to find w which minimises the sum of squared

residuals
n

2
> = el

i=1



Multivariate linear regression (4)

» Write yo = Xw, so our goal is to minimise ||€|[, = |ly — yol|,

» Since w € RY can be anything, yo can be any vector in the
linear span S of the columns of X

» In other words, yo € S = span(cy,...,cq) where
¢j = (xij,...,Xqj) is jth column of X and

span(cl,...,cd):{W1c1—|—~-+wdcd)|w€Rd}



Multivariate linear regression (5)

» Since S is a linear subspace of R”, the minimum of |y — yo/|,
subject to yp € S occurs when yq is the projection of y to S

» Therefore in particulary-¢c; =yg-cj for j=1,...,d
» Since y - ¢; = (XTy);, we write this in matrix form as
XTy = XTyy = XTXw
where we have substituted back yg = Xw
» Multiplying both sides by (XTX)~! gives the solution

w = (XTX)* X"y



Multivariate linear regression (6)

» If the columns c; of X are linearly independent, the matrix
XTX is of full rank and has an inverse

> For n > d this is true except for degenerate special cases
» XTX is a d x d matrix, and inverting it takes O(d3) time

» For very high dimensional problems the computation time may
be prohibitive



Nonlinear models by transforming the input

> Linear regression can also be used to fit models which are

nonlinear functions of the input

> Example: For fitting a degree 5 polynomial

2 4
yi = f(x;) = wo + wix; + wox? + wax? + wax{ + wex

. create the input matrix

X1
X2

X3

X
I
T

X4

3
X1

3
X5

3
X3

3
X4

, and y =

Y1
Y2

ya



Nonlinear predictors by transforming the input (2)
» We can also explicitly include some interaction terms, as in
yi = f(xi) = wo + wixi1 + waxi2 + wW3xi1Xi2

using the following input matrix:

1 x11 x12 xuixi2 7
1 o1 xo0 Xxo1x22 Y2
X=|1 x31 x32 x31x32 [ and y=| ¥3
1 xa1 xa2 Xa1Xa2 ya



Regularised regression

» If dimensionality d is high, linear models are actually quite
flexible

» We can avoid overfitting by minimising not just the squared
error ||y — Xw/|3 but the regularised cost

2 2
ly = Xwlf3 + Aflw])z
where A\ > 0 is a constant (chosen e.g. by cross validation)
> By increasing A we decrease variance but increase bias

» This allows us to sometimes get sensible results even in the
case n < d



Regularised regression (2)

» Minimising cost function
Iy = Xw3 + A flwl3
is known as ridge regression and has closed form solution
W = (XTX+AN"'XTy
» Popular alternative is /asso where we minimise
ly = Xw|3 + Xllwl|;

» Replacing 2-norm with 1-norm encourages sparse solutions
where many weights w; get set to zero

» There is no closed form solution to lasso, but efficient
numerical packages exist
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