
Regression



Outline

Regression Univariate Multivariate

Linear  

Non-Linear  



Linear models

I We consider the case x ∈ Rd throughout this chapter

I Function f : Rd → R is linear if for some w ∈ Rd it can be
written as

f (x) = w · x =
d∑

j=1

wjxj

and affine if for some w ∈ Rd and a ∈ R we can write

f (x) = w · x + a

I w is often called weight vector and a is called intercept (or
particularly in machine learning literature, bias)

188 ,



Linear models (2)

I Linear model generally means using an affine function by itself
for regression, or as scoring function for classification

I The learning problem is to determine the parameters w and a
based on data

I Linear regression and classification have been extensively
studies in statistics

189 ,



Univariate linear regression

I As warm-up, we consider linear regression in one-dimensional
case d = 1

I We use square error and want to minimise it on training set
(x1, y1), . . . , (xn, yn)

I Thus, we want to find a,w ∈ R that minimise

E (w , a) =
n∑

i=1

(yi − (wxi + a))2

I This is known as ordinary least squares and can be motivated
as maximum likelihood estimate for (w , a) if we assume

yi = wxi + a + ηi

where ηi are i.i.d. Gaussian noise with zero mean

190 ,



Univariate linear regression (2)

I We solve the minimisation problem by setting the partial
derivatives to zero

I We denote the solution by (ŵ , â)

I We have
∂E (w , a)

∂a
= −2

n∑

i=1

(yi − wxi − a)

and setting this to zero gives

â = ȳ − wx̄

where ȳ = (1/n)
∑

i yi and x̄ = (1/n)
∑

i xi

I This implies in particular that the point (x̄ , ȳ) is on the line
y = ŵx + â

191 ,



Univariate linear regression (3)

I Further,
∂E (w , a)

∂w
= −2

n∑

i=1

xi (yi − wxi − a)

I Plugging in a = â and setting the derivative to zero gives us

n∑

i=1

xi (yi − wxi − ȳ + wx̄) = 0

from which we can solve

ŵ =

∑N
i=1 xi (yi − ȳ)

∑N
i=1 xi (xi − x̄)

192 ,



Univariate linear regression (4)

I Since
n∑

i=1

x̄(yi − ȳ) = x̄

(
n∑

i=1

yi − nȳ

)
= 0

and
n∑

i=1

x̄(xi − x̄) = x̄

(
n∑

i=1

xi − nx̄

)
= 0

we can finally rewrite this as

ŵ =

∑N
i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2

I Notice that we have ŵ = σxy/σxx where σpq is sample
covariance between p and q:

σpq =
1

n − 1

n∑

i=1

(pi − p̄)(qi − q̄)

193 ,



Useful trick

I In more general situation than univariate regression, it would
often be simpler to learn just linear functions and not worry
about the intercept term

I An easy trick for this is to replace each instance
x = (x1, . . . , xd) ∈ Rd by x′ = (1, x1, . . . , xd) ∈ Rd+1

I Now an affine function f (x) = w · x + a in Rd becomes linear
function g(x ′) = w′ · x′ where w′ = (a,w1, . . . ,wd)

I If we write the set of instances x1, . . . , xn as an n × d matrix,
this means adding an extra column of ones

I This is known as using homogeneous coordinates (textbook p.
24)

194 ,



Useful trick (2)

I For most part we now present algorithms for learning linear
functions (instead of affine)

I In practice, to run them on d-dimensional data, we add the
column of ones and run the algorithm in d + 1 dimensions

I The first component of w then gives the intercept

I However sometimes we might still want to treat the intercept
separately (for example in regularisation)

195 ,



Multivariate linear regression

I We now move to the general case of learning a linear function
Rd → R for arbitrary d

I As discussed above, we omit the intercept

I We still use the square loss, which is by far the most
commonly used loss for linear regression

I One potential problem with square loss is its sensitivity to
outliers

I one alternative is absolute loss
∣∣∣y − f̂ (x)

∣∣∣
I computations become trickier with absolute loss

196 ,



Multivariate linear regression (2)

I We assume matrix X ∈ Rn×d has n instances xi as its rows
and y ∈ Rn contains the corresponding labels yi

I We write
y = Xw + ε

where the residual εi = yi −w · xi indicates error that weight
vector w makes on data point (xi , yi )

I Our goal is to find w which minimises the sum of squared
residuals

n∑

i=1

ε2
i = ‖ε‖2

2

197 ,



Multivariate linear regression (4)

I Write y0 = Xw, so our goal is to minimise ‖ε‖2 = ‖y − y0‖2

I Since w ∈ Rd can be anything, y0 can be any vector in the
linear span S of the columns of X

I In other words, y0 ∈ S = span(c1, . . . , cd) where
cj = (x1j , . . . , xdj) is jth column of X and

span(c1, . . . , cd) =
{

w1c1 + · · ·+ wdcd) | w ∈ Rd
}

198 ,



Multivariate linear regression (5)

I Since S is a linear subspace of Rn, the minimum of ‖y − y0‖2

subject to y0 ∈ S occurs when y0 is the projection of y to S

I Therefore in particular y · cj = y0 · cj for j = 1, . . . , d

I Since y · cj = (XTy)j , we write this in matrix form as

XTy = XTy0 = XTXw

where we have substituted back y0 = Xw

I Multiplying both sides by (XTX)−1 gives the solution

ŵ = (XTX)−1XTy

199 ,



Multivariate linear regression (6)

I If the columns cj of X are linearly independent, the matrix
XTX is of full rank and has an inverse

I For n > d this is true except for degenerate special cases

I XTX is a d × d matrix, and inverting it takes O(d3) time

I For very high dimensional problems the computation time may
be prohibitive

200 ,



Nonlinear models by transforming the input

I Linear regression can also be used to fit models which are
nonlinear functions of the input

I Example: For fitting a degree 5 polynomial

yi = f (xi ) = w0 + w1xi + w2x2
i + w3x3

i + w4x4
i + w5x5

i

. . . create the input matrix

X =




1 x1 x2
1 x3

1 x4
1 x5

1

1 x2 x2
2 x3

2 x4
2 x5

2

1 x3 x2
3 x3

3 x4
3 x5

3

1 x4 x2
4 x3

4 x4
4 x5

4

...
...

...
...

. . .



, and y =




y1

y2

y3

y4

...




201 ,



Nonlinear predictors by transforming the input (2)

I We can also explicitly include some interaction terms, as in

yi = f (xi ) = w0 + w1xi1 + w2xi2 + w3xi1xi2

using the following input matrix:

X =




1 x11 x12 x11x12

1 x21 x22 x21x22

1 x31 x32 x31x32

1 x41 x42 x41x42

...
...

...
...



, and y =




y1

y2

y3

y4

...




202 ,



Regularised regression

I If dimensionality d is high, linear models are actually quite
flexible

I We can avoid overfitting by minimising not just the squared
error ‖y − Xw‖2

2 but the regularised cost

‖y − Xw‖2
2 + λ ‖w‖2

2

where λ > 0 is a constant (chosen e.g. by cross validation)

I By increasing λ we decrease variance but increase bias

I This allows us to sometimes get sensible results even in the
case n < d

203 ,



Regularised regression (2)

I Minimising cost function

‖y − Xw‖2
2 + λ ‖w‖2

2

is known as ridge regression and has closed form solution

ŵ = (XTX + λI)−1XTy

I Popular alternative is lasso where we minimise

‖y − Xw‖2
2 + λ ‖w‖1

I Replacing 2-norm with 1-norm encourages sparse solutions
where many weights wi get set to zero

I There is no closed form solution to lasso, but efficient
numerical packages exist

204 ,


	Regression.pdf
	CIG4A3_MachineLearningLectures 213.pdf
	CIG4A3_MachineLearningLectures 214.pdf
	CIG4A3_MachineLearningLectures 215.pdf
	CIG4A3_MachineLearningLectures 216.pdf
	CIG4A3_MachineLearningLectures 217.pdf
	CIG4A3_MachineLearningLectures 218.pdf
	CIG4A3_MachineLearningLectures 219.pdf
	CIG4A3_MachineLearningLectures 220.pdf
	CIG4A3_MachineLearningLectures 221.pdf
	CIG4A3_MachineLearningLectures 222.pdf
	CIG4A3_MachineLearningLectures 223.pdf
	CIG4A3_MachineLearningLectures 224.pdf
	CIG4A3_MachineLearningLectures 225.pdf
	CIG4A3_MachineLearningLectures 226.pdf
	CIG4A3_MachineLearningLectures 227.pdf
	CIG4A3_MachineLearningLectures 228.pdf
	CIG4A3_MachineLearningLectures 229.pdf

