Regression

Outline

Regression	Univariate	Multivariate
Linear	\checkmark	\checkmark
Non-Linear	\checkmark	\checkmark

Linear models

- We consider the case $\mathbf{x} \in \mathbb{R}^{d}$ throughout this chapter
- Function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is linear if for some $\mathbf{w} \in \mathbb{R}^{d}$ it can be written as

$$
f(\mathbf{x})=\mathbf{w} \cdot \mathbf{x}=\sum_{j=1}^{d} w_{j} x_{j}
$$

and affine if for some $\mathbf{w} \in \mathbb{R}^{d}$ and $a \in \mathbb{R}$ we can write

$$
f(\mathbf{x})=\mathbf{w} \cdot \mathbf{x}+a
$$

- \mathbf{w} is often called weight vector and a is called intercept (or particularly in machine learning literature, bias)

Linear models (2)

- Linear model generally means using an affine function by itself for regression, or as scoring function for classification
- The learning problem is to determine the parameters \mathbf{w} and a based on data
- Linear regression and classification have been extensively studies in statistics

Univariate linear regression

- As warm-up, we consider linear regression in one-dimensional case $d=1$
- We use square error and want to minimise it on training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Thus, we want to find $a, w \in \mathbb{R}$ that minimise

$$
E(w, a)=\sum_{i=1}^{n}\left(y_{i}-\left(w x_{i}+a\right)\right)^{2}
$$

- This is known as ordinary least squares and can be motivated as maximum likelihood estimate for (w, a) if we assume

$$
y_{i}=w x_{i}+a+\eta_{i}
$$

where η_{i} are i.i.d. Gaussian noise with zero mean

Univariate linear regression (2)

- We solve the minimisation problem by setting the partial derivatives to zero
- We denote the solution by (\hat{w}, \hat{a})
- We have

$$
\frac{\partial E(w, a)}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-w x_{i}-a\right)
$$

and setting this to zero gives

$$
\hat{a}=\bar{y}-w \bar{x}
$$

where $\bar{y}=(1 / n) \sum_{i} y_{i}$ and $\bar{x}=(1 / n) \sum_{i} x_{i}$

- This implies in particular that the point (\bar{x}, \bar{y}) is on the line $y=\hat{w} x+\hat{a}$

Univariate linear regression (3)

- Further,

$$
\frac{\partial E(w, a)}{\partial w}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-w x_{i}-a\right)
$$

- Plugging in $a=\hat{a}$ and setting the derivative to zero gives us

$$
\sum_{i=1}^{n} x_{i}\left(y_{i}-w x_{i}-\bar{y}+w \bar{x}\right)=0
$$

from which we can solve

$$
\hat{w}=\frac{\sum_{i=1}^{N} x_{i}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N} x_{i}\left(x_{i}-\bar{x}\right)}
$$

Univariate linear regression (4)

- Since

$$
\sum_{i=1}^{n} \bar{x}\left(y_{i}-\bar{y}\right)=\bar{x}\left(\sum_{i=1}^{n} y_{i}-n \bar{y}\right)=0
$$

and

$$
\sum_{i=1}^{n} \bar{x}\left(x_{i}-\bar{x}\right)=\bar{x}\left(\sum_{i=1}^{n} x_{i}-n \bar{x}\right)=0
$$

we can finally rewrite this as

$$
\hat{w}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

- Notice that we have $\hat{w}=\sigma_{x y} / \sigma_{x x}$ where $\sigma_{p q}$ is sample covariance between p and q :

$$
\sigma_{p q}=\frac{1}{n-1} \sum_{i=1}^{n}\left(p_{i}-\bar{p}\right)\left(q_{i}-\bar{q}\right)
$$

Useful trick

- In more general situation than univariate regression, it would often be simpler to learn just linear functions and not worry about the intercept term
- An easy trick for this is to replace each instance $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ by $\mathbf{x}^{\prime}=\left(1, x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d+1}$
- Now an affine function $f(x)=\mathbf{w} \cdot \mathbf{x}+a$ in \mathbb{R}^{d} becomes linear function $g\left(x^{\prime}\right)=\mathbf{w}^{\prime} \cdot \mathbf{x}^{\prime}$ where $\mathbf{w}^{\prime}=\left(a, w_{1}, \ldots, w_{d}\right)$
- If we write the set of instances $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ as an $n \times d$ matrix, this means adding an extra column of ones
- This is known as using homogeneous coordinates (textbook p. 24)

Useful trick (2)

- For most part we now present algorithms for learning linear functions (instead of affine)
- In practice, to run them on d-dimensional data, we add the column of ones and run the algorithm in $d+1$ dimensions
- The first component of \mathbf{w} then gives the intercept
- However sometimes we might still want to treat the intercept separately (for example in regularisation)

Multivariate linear regression

- We now move to the general case of learning a linear function $\mathbb{R}^{d} \rightarrow \mathbb{R}$ for arbitrary d
- As discussed above, we omit the intercept
- We still use the square loss, which is by far the most commonly used loss for linear regression
- One potential problem with square loss is its sensitivity to outliers
- one alternative is absolute loss $|y-\hat{f}(x)|$
- computations become trickier with absolute loss

Multivariate linear regression (2)

- We assume matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has n instances \mathbf{x}_{i} as its rows and $\mathbf{y} \in \mathbb{R}^{n}$ contains the corresponding labels y_{i}
- We write

$$
\mathbf{y}=\mathbf{X} \mathbf{w}+\epsilon
$$

where the residual $\epsilon_{i}=y_{i}-\mathbf{w} \cdot \mathbf{x}_{i}$ indicates error that weight vector \mathbf{w} makes on data point $\left(\mathbf{x}_{i}, y_{i}\right)$

- Our goal is to find \mathbf{w} which minimises the sum of squared residuals

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\|\boldsymbol{\epsilon}\|_{2}^{2}
$$

Multivariate linear regression (4)

- Write $\mathbf{y}_{0}=\mathbf{X w}$, so our goal is to minimise $\|\boldsymbol{\epsilon}\|_{2}=\left\|\mathbf{y}-\mathbf{y}_{0}\right\|_{2}$
- Since $\mathbf{w} \in \mathbb{R}^{d}$ can be anything, \mathbf{y}_{0} can be any vector in the linear span S of the columns of \mathbf{X}
- In other words, $\mathbf{y}_{0} \in S=\operatorname{span}\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{d}\right)$ where $\mathbf{c}_{j}=\left(x_{1 j}, \ldots, x_{d j}\right)$ is j th column of \mathbf{X} and

$$
\left.\operatorname{span}\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{d}\right)=\left\{w_{1} \mathbf{c}_{1}+\cdots+w_{d} \mathbf{c}_{d}\right) \mid \mathbf{w} \in \mathbb{R}^{d}\right\}
$$

Multivariate linear regression (5)

- Since S is a linear subspace of \mathbb{R}^{n}, the minimum of $\left\|\mathbf{y}-\mathbf{y}_{0}\right\|_{2}$ subject to $y_{0} \in S$ occurs when y_{0} is the projection of \mathbf{y} to S
- Therefore in particular $\mathbf{y} \cdot \mathbf{c}_{j}=\mathbf{y}_{0} \cdot \mathbf{c}_{j}$ for $j=1, \ldots, d$
- Since $\mathbf{y} \cdot \mathbf{c}_{j}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{y}\right)_{j}$, we write this in matrix form as

$$
\mathbf{X}^{\mathrm{T}} \mathbf{y}=\mathbf{X}^{\mathrm{T}} \mathbf{y}_{0}=\mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}
$$

where we have substituted back $\mathbf{y}_{0}=\mathbf{X w}$

- Multiplying both sides by $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ gives the solution

$$
\hat{w}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}
$$

Multivariate linear regression (6)

- If the columns $\mathbf{c}_{\boldsymbol{j}}$ of \mathbf{X} are linearly independent, the matrix $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ is of full rank and has an inverse
- For $n>d$ this is true except for degenerate special cases
- $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ is a $d \times d$ matrix, and inverting it takes $O\left(d^{3}\right)$ time
- For very high dimensional problems the computation time may be prohibitive

Nonlinear models by transforming the input

- Linear regression can also be used to fit models which are nonlinear functions of the input
- Example: For fitting a degree 5 polynomial

$$
y_{i}=f\left(x_{i}\right)=w_{0}+w_{1} x_{i}+w_{2} x_{i}^{2}+w_{3} x_{i}^{3}+w_{4} x_{i}^{4}+w_{5} x_{i}^{5}
$$

... create the input matrix

$$
\mathbf{X}=\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} & x_{1}^{5} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} & x_{2}^{5} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & x_{3}^{4} & x_{3}^{5} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & x_{4}^{4} & x_{4}^{5} \\
\vdots & \vdots & \vdots & \vdots & \ddots &
\end{array}\right), \text { and } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots
\end{array}\right)
$$

Nonlinear predictors by transforming the input (2)

- We can also explicitly include some interaction terms, as in

$$
y_{i}=f\left(\mathbf{x}_{i}\right)=w_{0}+w_{1} x_{i 1}+w_{2} x_{i 2}+w_{3} x_{i 1} x_{i 2}
$$

using the following input matrix:

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{11} & x_{12} & x_{11} x_{12} \\
1 & x_{21} & x_{22} & x_{21} x_{22} \\
1 & x_{31} & x_{32} & x_{31} x_{32} \\
1 & x_{41} & x_{42} & x_{41} x_{42} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right), \text { and } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots
\end{array}\right)
$$

Regularised regression

- If dimensionality d is high, linear models are actually quite flexible
- We can avoid overfitting by minimising not just the squared error $\|\mathbf{y}-\mathbf{X w}\|_{2}^{2}$ but the regularised cost

$$
\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

where $\lambda>0$ is a constant (chosen e.g. by cross validation)

- By increasing λ we decrease variance but increase bias
- This allows us to sometimes get sensible results even in the case $n<d$

Regularised regression (2)

- Minimising cost function

$$
\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

is known as ridge regression and has closed form solution

$$
\hat{w}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}
$$

- Popular alternative is lasso where we minimise

$$
\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}
$$

- Replacing 2-norm with 1-norm encourages sparse solutions where many weights w_{i} get set to zero
- There is no closed form solution to lasso, but efficient numerical packages exist

