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ABSTRACT An n-gram syllabification model generally produces high error rate for a low-resource
language, such as Indonesian, because of the high rate of out-of-vocabulary (OOV) n-grams. In this
paper, a combination of three methods of data augmentations are proposed to solve the problem, namely
swapping consonant-graphemes, flipping onsets, and transposing nuclei. An investigation on 50k Indonesian
words shows that combination of the three data augmentation methods drastically increases the amount
of both unigrams and bigrams. A previous procedure of flipping onsets has been proven to enhance the
standard bigram-syllabification by relatively decreasing the syllable error rate (SER) by up to 18.02%.
Meanwhile, the previous swapping consonant-graphemes has been proven to give a relative decrement of
SER up to 31.39%. In this research, a new transposing nuclei-based augmentation method is proposed and
combined with both flipping and swapping procedures to tackle the drawback of bigram syllabification
in handling the OOV bigrams. An evaluation based on k-fold cross-validation (k-FCV), using k = 5, for
50 thousand Indonesian formal words concludes that the proposed combination of the three procedures
relatively decreases the mean SER produced by the standard bigram model by up to 37.63%. The proposed
model is comparable to the fuzzy k-nearest neighbour in every class (FkNNC)-based model. It is worse than
the state-of-the-art model, which is developed using combination of bidirectional long short-term memory
(BiLSTM), convolutional neural networks (CNN), and conditional random fields (CRF), but it offers a low
complexity.

INDEX TERMS Indonesian, bigram, flipping onsets, orthographic syllabification, swapping consonant-
graphemes, transposing nuclei

I. INTRODUCTION

A syllabification can be defined as a splitting a word into
syllables automatically. It is important not just in some

researches but also in many linguistics-based applications. It
is generally used in speech recognition [1] [2], speech syn-
thesis [3] [4] [5], emotion classification [6] [7], speaker’s di-
alect identification [8], speaking rate estimation [9], speaking
proficiency scoring [10], word count estimation [11], phone-
micization [12] [13], collecting a minimum sentence set in
developing speech corpus, as described in [14] [15] [16], etc.

The syllabification is preferably applied to graphemes
than phonemes because of both simplicity and flexibility.
Although a graphemic (or orthographic) syllabification gen-
erally gives lower accuracy [17] than the phonemic one [18],
it can be easily applied to both unseen words and named-

entities that have so many exceptions and ambiguities.

Most researchers prefer a statistical-based syllabification
much more than the rule-based one as it is simpler and
accurate [19]. For example, a simple Näive Bayes pro-
duces quite low SER of around 12.90% for the Romanian
language [20]. Some other statistical models use decision
tree [20] [21], treebank [22], random forest [20], neural net-
work [23] [24] [25] [26], support vector machine [20] [27],
finite-state transducers [28] [29], context-free grammars [30],
hidden Markov model [31], syllabification by analogy [19],
dropped-and-matched model [32], n-gram [33], conditional
random fields [34] [35], nearest neighbour [17], and unsu-
pervised model [36].

The neural language models proposed in [37] [38] give
excellent results. A recent model based on BiLSTM-CNN-
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CRF gives the state-of-the-art result [39]. But, some n-gram
models produce comparable accuracies as well as offer sim-
plicity and fast processing [40] [41] [42].

In [33], the researchers prove that n-gram syllabification,
which is one of the simplest models, produces a low word
error rate (WER) of 0.15% for the phonemic sequences
of the Germany language. It can be generalized into any
language since it does not need any knowledge of a particular
language. However, the n-gram model is generally poor for
a tiny dataset producing many OOV n-grams. In [43], the
researcher proposes a simple combined standard bigram and
flipping onsets model (BFO) to tackle the OOV problem.
Compare to the standard bigram models, the simple proce-
dure can relatively reduce the SER by 18.02%. However, its
performance is not stable for a tiny dataset.

In [44], the researcher proposes a simple backoff smooth-
ing procedure called swapping phonological similarities
(CBSPS) model, which can boost a bigram-based ortho-
graphic syllabification. It also performs better than the BFO
model. In this research, a new model called a combination of
flipping-onsets with standard-trigram and augmented-bigram
syllabification (CFTABS) is proposed to solve the problem.
Standard trigram is expected to perform better than bi-
gram. Three augmentation methods of swapping consonant-
graphemes, flipping onsets, and transposing nuclei are pro-
posed to reduce the OOV rate. Next, CFTABS is evaluated
and compared to BiLSTM-CNN-CRF [39] using 50 k In-
donesian words based on 5-fold cross-validation scheme.

II. PRELIMINARY STUDY ON INDONESIAN
For many languages, those three methods of data augmen-
tations commonly create many illegal syllables for both un-
igrams and bigrams. But, for other simpler languages with
a nearly one-to-one grapheme-to-phoneme mapping, such as
Indonesian, they generate many legal ones. Swapping several
consonant-graphemes in a word for all combinations may
generate some new words. It is performed by replacing them
with other similar ones in the same manner and/or place of ar-
ticulations. For example, swapping consonant-graphemes in
an original formal word "be.ras" (rice) generates three other
words: "be.las" (mercy), "pe.ras" (squeeze), and "pe.las"
(pity) with no shifting the syllabification boundaries as both
〈b〉 and 〈p〉 are pronounced as the plosive-bilabial phonemes
while 〈r〉 and 〈l〉 are pronounced as the trill and lateral-dental
phonemes. Flipping two onsets in the original word yields
another word "re.bas" (boil) without shifting the syllabifi-
cation point. Flipping two onsets in the three consonants-
swapped words produces three other words: "le.bas" (too
ripe), "re.pas" (fragile), and "le.pas" (free). Transposing two
nuclei in the original word produces another new word,
"ba.res" (OOV). Transposing two nuclei in all consonants-
swapped and onsets-flipped words produces seven new
words: "ba.les" (reply), "pa.res" (OOV), "pa.les" (discor-
dant), "re.bas" (OOV), "la.bes" (OOV), "ra.pes" (OOV),
and "la.pes" (OOV). Thus, in this case, the three methods
augment a short original formal word "be.ras" (rice) into nine

new formal words and six OOV words.
Furthermore, the Indonesian language has 18 prefixes [45].

Swapping some graphemes in the prefixes produce much
more other legal suffixes than the illegal ones called noises, as
described in [44]. A preliminary study shows that the dataset
of 50 k Indonesian words produces up to 161,981 unigrams.
Applying three augmentation procedures to the dataset gener-
ates up to 9,620,054 augmented unigrams (87.20% are legal).
The 50 k words generate a total of 111,412 bigrams. The aug-
mentation procedures yield 7,308,702 augmented bigrams
(77.26% are legal). Finally, the 50 k words generate a total
of 136,812 syllable trigrams. In this research, the augmented
syllable trigrams are not generated since they produce a high
sparsity of trigrams and consequently they are not effective
in the syllabification process. Based on a particular criterion,
such as phonotactic rule, those grams can be classified into
two classes: legal and illegal. However, it is quite hard to
recognize them as legal or illegal. Therefore, CFTABS are
designed to use all generated syllable unigrams and bigrams
without filtering to focus this research on examining how
much the proposed CFTABS decreases the SER.

III. RESEARCH METHOD
The training process of the proposed model can be easily
explained as the combination of normal (or standard) and
swapped syllabifications. A dataset containing pairs of words
and syllabification points is scanned to create two lists of
normal syllable unigrams and bigrams as well as two lists
of augmented syllable unigrams and bigrams, which is illus-
trated in Fig. 1.

Next, both normal and swapped unigrams as well as bi-
grams are used to test the model, which is illustrated in Fig.
2, to maximize the final score to produce the best syllable
sequence as the output. For example, let a given grapheme
sequence is 〈beras〉 (rice). First, two vowel-graphemes 〈e〉
and 〈a〉 are searched and their positions are listed as {2,
4}. Next, two candidates syllabifications are then generated,
i.e. 〈be.ras〉 and 〈ber.as〉. Flipping onsets in each candidate
is then performed. The score of each candidate for both
standard and flipped syllabifications are then calculated and
finally a candidate having the biggest score is chosen as
the output. For example, the candidate 〈be.ras〉 obtains the
biggest score so that is selected as the best syllabification. It
can be easily explained as follows. Although both original
bigram 〈be.ras〉 and its flipped version 〈re.bas〉 do not ap-
pear in the training set, they may come from other words
that are augmented using the thee proposed methods and
listed in the table of augmented bigrams, such as "be.las"
(mercy), "pe.ras" (squeeze), "pe.las" (pity), and other words
described in Section II. Hence, this candidate has a high score
(probability). Meanwhile, the other candidate 〈ber.as〉 and its
flipped version 〈er.bas〉 cannot come from other augmented
words that are listed in the table of augmented bigrams so
that it has a lower score than the first candidate. Therefore,
the proposed CFTABS model is capable of syllabifying the
given grapheme sequence 〈beras〉 into 〈be.ras〉.
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A data set of pairs of words and their syllabifications :
- beras     be.ras

- berasa   be.ra.sa

Creating table of syllable-unigrams

Creating both table of syllable-bigrams 

and table of syllable-trigrams

Table of syllable-unigrams & frequencies:
- be 2

- ra 1

- ras 1
- sa 1

Table of syllable-bigrams & frequencies:
- <s>.be 2

- be.ras 1

- ras.</s> 1
- be.ra 1
- ra.sa 1

- sa.</s> 1

Table of syllable-trigrams & frequencies:
- <s>.be.ras 1

- be.ras.</s> 1
- <s>.be.ra 1
- ra.sa.</s> 1

- be.ra.sa 1

Creating table of augmented-unigrams

Creating table of augmented-bigrams

Table of augmented-unigrams & frequencies:
- ba 6 - le 6 - ra 5
- bas 2 - les 2 - ras 1
- be 4 - pa 6 - re 6

- bes 2 - pas 2 - res 2
- la 6 - pe 6 - sa     15
- las 2 - pes 2

Table of augmented-bigrams & frequencies:
- <s>.ba     4 - pes.</s>  2 - be.la 1      - le.pas   1      - pe.sa   2
- <s>.be     2 - las.</s>   2 - be.las 1      - le.sa     2      - ra.be    1

- <s>.pa     4 - les.</s>   2 - be.sa 2      - pa.le     1      - ra.bes  1
- <s>.pe     4 - ras.</s>   1 - la.be 1      - pa.les   1      - ra.pe    1
- <s>.la      4 - res.</s>   2 - la.bes 1      - pa.re   1      - ra.pes  1
- <s>.le 4 - sa.</s>   15 - la.pe 1      - pa.res   1      - ra.sa    1

- <s>.ra 4 - ba.le    1 - la.pes 1      - pa.sa    2      - re.ba    1
- <s>.re 4 - ba.les   1 - la.sa 2      - pe.la     1      - re.bas  1
- bas.</s>  2 - ba.re        1 - le.ba 1      - pe.las   1      - re.pa    1

- bes.</s>  2 - ba.res      1 - le.bas 1      - pe.ra  1      - re.pas  1
- pas.</s>  2 - ba.sa       2 - le.pa 1      - pe.ras   1      - re.sa    2

Creating list of normal syllabifications

List of all normal-syllabifications:

- be.ras

- be.ra.sa

Augmenting data using combination of 
swapping consonant-graphemes, flipping 

onsets, and transposing nucleuses

List of all augmented-syllabifications:

- be.las, pe.ras, pe.las, re.bas, le.bas, re.pas, le.pas,
ba.res, ba.les, pa.res, pa.les, ra.bes, la.bes, ra.pes, la.pes

- be.la.sa, pe.ra.sa, pe.la.sa, re.ba.sa, le.ba.sa, re.pa.sa, le.pa.sa,
ba.re.sa, ba.le.sa, pa.re.sa, pa.le.sa, ra.be.sa, la.be.sa, ra.pe.sa, la.pe.sa

FIGURE 1. Training process of the proposed combination of flipping-onsets
with standard-trigram and augmented-bigram syllabification (CFTABS).

Detecting all positions of vowels

A sequence of graphemes: <beras>

Generating all possible standard- and their flipped 
onsets-syllabifications

Positions of vowels: {2, 4}

Candidates standard- and flipped onsets-syllabifications:
1. <be.ras>, <re.bas>
2. <ber.as>, <er.bas>

Maximizing the Stabs score formulated in Equation (5)

A sequence of syllables with maximum Stabs score: <be.ras>

Searching each candidate in both 
tables of syllable-trigrams, bigrams, 
and unigrams, then calculating the 
Sts score using Equation (2) 

Searching each candidate in both 
tables of augmented-bigrams and 
unigrams, then calculating the Sabs

score using Equation (4) 

FIGURE 2. Block diagram of the proposed CFTABS model.

A. TRIGRAM-SYLLABIFICATION MODEL

A trigram-syllabification (TS) is a longer version of a bigram-
syllabification (BS) described in [44]. It works by maximiz-

ing the likelihood (or probability) of a given sequence of
syllables. A trigram-syllabification probability of L tokens
P (w1, w2, ..., wL) is commonly calculated using a proba-
bility chain. This probability is commonly estimated using
many smoothing methods to tackle the OOV problem. One
of the smoothing methods is the Stupid Backoff described
in [46], where the estimated probability called a score S
(since it can be greater than 1) is formulated as

P (w1, w2, ..., wL) =

L∏
i=1

P (wi|wi−2wi−1)

≈
L∏
i=1

S(wi|wi−2wi−1),

(1)

Sts(wi|wi−2wi−1) =


f(wi−2wi−1wi)
f(wi−2wi−1)

if f(wi−2wi−1wi) > 0

αSbs(wi|wi−1) otherwise

(2)

Sbs(wi|wi−1) =


f(wi−1wi)
f(wi−1)

if f(wi−1wi) > 0

α f(wi)
N otherwise

(3)

where Sts and Sbs are the scores of both trigram and bigram,
respectively, f(wi−2wi−1wi), f(wi−1wi), and f(wi) are the
trigram, bigram, and unigram frequencies happen in the train-
set, respectively, wi is the ith syllable (or unigram), wi−1wi
is a bigram that is built from both (i-1)th and ith syllables,
wi−2wi−1wi is a trigram that comes from (i-2)th, (i-1)th,
and ith syllables, α is the backoff factor that commonly
recommend to be 0.4 as described in [46], and N is the total
grams in the trainset.

In general, TS produces quite low performance when
the trainset is tiny with many OOV syllables [35]. Another
technique to improve the performance of TS is a procedure
of decreasing the OOV rate.

B. TFO MODEL
In this research, the combined trigram and flipping onsets-
based syllabification model (TFO) is an improved version of
the bigram and flipping onsets-based syllabification model
(BFO) described in [43]. TFO is a modification of the TS,
which is explained in the subsection III-A, by adding a simple
procedure of flipping two first onsets in a word. Similar to
the BFO described in [43], here TFO is easily described in a
pseudocode below:

1) Detect positions of both vowels and diphthongs in the
input grapheme sequence

2) Generate C possible bigram-syllabifications (all can-
didates) and then calculate their scores Si using TS
model, where i = 1, 2, ..., C;

3) For each candidate consisting of two or more sylla-
bles, generate a new candidate by flipping their onsets
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contained in the first two syllables and then define the
average score S̄i calculated from both scores of TS and
its flipped onsets; and

4) Choose the ith candidate that has the biggest S̄i as the
output.

C. CFTABS MODEL
In this research, the three proposed augmentation methods
function to reduce the number of OOV grams in BS. They
create a variant model, which is called augmented bigram-
syllabification (ABS), with a new score formulated as

Sabs(wi|wi−1) =


B fs(wi−1wi)

fs(wi−1)
if fs(wi−1wi) > 0

Uα fs(wi)
Ns

otherwise,
(4)

where fs(wi−1wi) and fs(wi) are the augmented- bigram
and unigram frequencies happen in the normal trainset, wi
is the ith syllable (or unigram), wi−1wi is a bigram that is
composed from (i− 1)th and ith syllables, Ns is the number
of grams in the augmented training-set, B and U are the
weights of augmented- bigram and unigram, respectively,
and α is the backoff factor in Equation 3. As a bigram plays
more critical role to syllabifying a word than the unigram, the
value of B should be much bigger than U .

Next, a combined trigram and augmented bigram syl-
labification (TABS) model is created using a score Stabs
formulated as

Stabs = Sts + βSabs (5)

where Sts is the trigram-syllabification score in Equation
(2) and Sabs is the augmented-bigram-syllabification score
in Equation (4), and β is the weight that is used in the
augmented-bigram score.

Finally, both TFO and TABS models are then combined
to be CFTABS, which takes into account unigrams, bigrams,
and trigrams (that are built from the original words) as well as
both augmented-unigrams and augmented-bigrams (that are
developed from the augmented words). The detailed expla-
nation of CFTABS with a simple example of syllabifying a
word is illustrated in Fig 2.

D. THREE AUGMENTATION METHODS
Since most Indonesian graphemes are pronounced as the
same phonemes, some onset graphemes can be swapped
based on the phoneme categorization in [45]. Table 1 illus-
trates some Indonesian graphemes and their swaps. There
are 14 graphemes and their swaps, each of which is simply
mapped into those phoneme categorizations. This mapping
is possible due to their strong relation to the corresponding
phonemes [45] [47]. A word that consists of one or more
graphemes in Table Table 1 can be swapped to produce one
or more other words.

For example, both 〈b〉 and 〈p〉 are pronounced as plosive-
bilabial phonemes. In general, swapping 〈b〉 into 〈p〉 gener-
ates some new legal unigrams and bigrams, such as "ba.ku"

TABLE 1. Graphemes and their swaps based on phoneme category

Phoneme category Gr. Sw, Example
Plosive-Bilabial: b p ba.ku (standard)
{b, p} → pa.ku (nail)

p b pe.ri (fairy)
→ be.ri (give)

Plosive-Dental: d t de.bu (dust)
{d, t} → te.bu (cane)

t d ta.yang (show)
→ da.yang (court lady)

Plosive-Velar: g k ga.bung (join)
{g, k} → ka.bung (mourning)

k g ka.mis (thursday)
→ ga.mis (clothes)

Affricative-Palatal: c j ce.ruk (niche)
{c, j} → je.ruk (orange)

j c ja.wat (stretched out)
→ ca.wat (loincloth)

Fricative-Labiodental: f v fo.li (thin metal)
{f, v} → vo.li (volley)

v f vi.si (vision)
→ fi.si (fission)

Fricative-Dental: s z a.sam (acid)
{s, z} → a.zam (aim)

z s ze.ni (soldier)
→ se.ni (art)

Thrill/Lateral-Dental: l r lang.ka (rare)
{l, r} → rang.ka (frame)

r l ram.bu (sign)
→ lam.bu (canoe)

(standard) is swapped to be "pa.ku" (nail), "ba.wang" (onion)
to be "pa.wang" (handler), "be.ta" (I am) to be "pe.ta" (map),
etc. Swapping the grapheme 〈p〉 into 〈b〉 also generally
creates several new syllable unigrams and bigrams, such as
"pe.ri" (fairy) is swapped to be "be.ri" (give), "pa.da" (on) to
be "ba.da" (after), "pi.ta" (tape) to be "bi.ta" (bytes), etc.

The grapheme 〈d〉 is in the same category with grapheme
〈t〉, i.e. plosive-dental. Swapping the grapheme 〈d〉 into 〈t〉
generally produces some new legal syllable unigrams and
bigrams, such as "de.bu" (dust) is swapped to be "te.bu"
(cane), "de.bar" (flutter) to be "te.bar" (spread out), "da.ra"
(virgin) to be "ta.ra" (the same level), etc. Swapping the
grapheme 〈t〉 into 〈d〉 also generally creates several new
syllable unigrams and bigrams, such as "ta.yang" (show) can
be swapped to be "da.yang" (court lady), "ta.pa" (asceticism)
is swapped to be "da.pa" (ransom slaves), "ta.rah" (flat) to be
"da.rah" (blood), etc.

Both 〈g〉 and 〈k〉 are plosive-velar. Swapping grapheme 〈g〉
into 〈k〉 generates several legal unigrams and bigrams, such
as "ga.bung" (join) is swapped to be "ka.bung" (mourning),
"ge.tar" (shakes) to be "ke.tar" (daunted), "gi.la" (crazy)
to be "ki.la" (stake), etc. Swapping the grapheme 〈k〉 into
〈g〉 also generally creates several new syllable unigrams and
bigrams, such as "ka.mis" (thursday) to be "ga.mis" (clothes),
"ke.mit" (night guard) is swapped to be "ge.mit" (poke),
"ka.ri" (curry) to be "ga.ri" (handcuffs), etc.

The grapheme 〈c〉 is in the same category with grapheme
〈j〉, i.e. affricative-palatal. Swapping the grapheme 〈c〉 into
〈j〉 commonly produces some legal syllable unigrams and
bigrams, such as "ce.ruk" (niche) is swapped to be "je.ruk"
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(orange), "ca.ri" (search) is swapped to be "ja.ri" (finger),
"ca.har" (liquid) to be "ja.har" (loud), etc. Swapping the
grapheme 〈j〉 into 〈c〉 also generally creates several new
syllable unigrams and bigrams, such as "ja.wat" (stretched
out) is swapped to be "ca.wat" (loincloth), "ja.ra" (small
drill) to be "ca.ra" (way), "ja.ran" (horse) to be "ca.ran"
(woman fighting), etc.

In [45], the authors state that Indonesian does not have
phoneme /v/, where the grapheme 〈v〉 is always pronounced
as phoneme /f/ so that it can be swapped into 〈f〉. For instance,
the word "fo.li" (thin metal) is swapped as "vo.li" (volley) and
"vi.si" (vision) is swapped as "fi.si" (fission).

Both graphemes 〈s〉 and 〈z〉 are in the same category:
fricative-dental. In general, swapping the grapheme 〈s〉 into
〈z〉 generates some new legal syllable unigrams and bigrams,
such as "a.sam" (acid) is swapped to be "a.zam" (aim).
Swapping the grapheme 〈z〉 into 〈s〉 converts a word "ze.ni"
(soldier) into "se.ni" (art).

Finally, both graphemes 〈l〉 and 〈r〉 are considerably in
the same category: thrill/lateral-dental. In general, swapping
the grapheme 〈s〉 into 〈z〉 generates some new legal syllable
unigrams and bigrams, such as "lang.ka" (rare) is swapped
to be "rang.ka" (frame). Swapping the grapheme 〈z〉 into 〈s〉
converts a word "ram.bu" (sign) into "lam.bu" (canoe).

However, swapping graphemes does not always produce
other formal words. Sometimes, it creates an illegal word. For
instance, swapping grapheme "p" in the word "pa.ha" (thigh)
creates a new word "ba.ha", which is illegal (OOV). But,
the interesting fact is that the new word is a sub-word that
comes from another word "ba.ha.gi.a" (happy). Of course,
the swapped word increase the number of bigrams. Thus,
the swapping word can be considered as one of the data
augmentation methods. It can be expected to provide a more
accurate score in Equation (5) to give a better syllabification.

Furthermore, Table 2 shows some examples of augmented
words that are built from two original words without chang-
ing the syllabification points. First, the original word "be.ri"
is swapped for all combinations to produce three new words:
"be.li" (buy), "pe.ri" (fairy), and "pe.li" (OOV). Both original
and swapped words are then augmented using the flipping on-
sets to generate four OOV words: "re.bi", "le.bi", "re.pi", and
"le.pi". Finally, all the original, swapped, and flipped words
are augmented using transposing their nuclei to produce eight
OOV words: "bi.re", "bi.le", "pi.re", "pi.le", "ri.be", "li.be",
"ri.pe", and "li.pe". Thus, this original word is augmented
to be 15 new words, where only two words are formally
found in the Indonesian dictionary while the rests are OOV
words. But, an interesting phenomenon is the OOV words
can be some sub-words for many other formal words. For
example, the OOV word "pe.li" is a sub-word that comes
from other words: "pe.li.as" (spell), "pe.li.cin" (lubricant),
"pe.li.ta" (light), etc. The second formal word "ba.tu"is also
augmented into 15 new words, where seven words are formal
and the rests are OOV words that can also be some sub-words
for many other formal words. Therefore, no doubt that the
augmented words are capable of increasing the number of

both unigrams and bigrams, which is expected to make the
cbsps score in Equation (5) more accurate.

TABLE 2. Example of some augmented words that are generated using
combination of swapping consonants-graphemes, flipping onsets, and
transposing nuclei in the original words without shifting the syllabification
points

Original word Augmented words
be.ri (give) be.li (buy), pe.ri (fairy), pe.li (OOV), re.bi (OOV),

le.bi (OOV), re.pi (OOV), le.pi (OOV), bi.re
(OOV), bi.le (OOV), pi.re (OOV), pi.le (OOV),
ri.be (OOV), li.be (OOV), ri.pe (OOV), li.pe
(OOV)

ba.tu (stone) ba.du (checkered patterned), pa.tu (small pickaxe),
pa.du (coherent), ta.bu(taboo), da.bu (OOV), ta.pu
(OOV), da.pu (OOV), bu.ta (blind), bu.da (OOV),
pu.ta (OOV), pu.da (OOV), tu.ba (tube), du.ba
(OOV), tu.pa (OOV), du.pa (incense)

IV. RESULT AND DISCUSSION
The three parameters of the proposed CFTABS: U , B, and
β are jointly optimized using a fixed α = 0.4 as suggested
in [46]. The result is illustrated in Fig. 3. The optimum
parameters are U = 0.1, B = 100, and β = 0.75 that give
the lowest SER of 2.37%. This result proves the hypothesis
explained in subsection III-C, where the value of B should
be much bigger than U since bigram is more critical than
unigram in syllabifying a word. The optimum β = 0.75
also makes sense because the percentage of legal bigrams
produced by the proposed augmentation methods is 77.26%
as stated in Section II.

The CFTABS is then compared to five other mod-
els: BS [43], BFO [43], CBSPS [44], FkNNC [17], and
BiLSTM-CNN-CRF [39]. Evaluation based on 5-FCV using
a dataset consisting of 50 k Indonesian words explained
in [17] [43] [44].

The results that are shown in Fig. 4 show that CFTABS
better than three other bigram-based models but worse than
FkNNC as well as BiLSTM-CNN-CRF. It produces SER of
2.37% that is lower than BS, BFO, and CBSPS with average
SER of 3.80%, 3.11%, and 2.61% respectively. It means that
CFTABS relatively reduces the average SER of BS by up
to 37.63%. FkNNC gives a slightly lower SER of 2.27%.
Meanwhile, BiLSTM-CNN-CRF reaches the lowest SER of
0.44%.

Based on the results, the proposed CFTABS is comparable
to FkNNC. But, by offering a low complexity, it can be more
preferable than FkNNC. It just computes the probabilities
of tens or less candidates based on both original and aug-
mented n-grams to decide a syllabification point. Meanwhile,
FkNNC should: firstly, computes the dissimilarities between
a candidate pattern of syllabification and the others in the
trainset (up to 250 k patterns); secondly, chooses k neigh-
bours in each class; finally, select the smallest dissimilarity to
make a decision. Compared to BiLSTM-CNN-CRF in terms
of complexity, the proposed CFTABS is also better. It needs
much lower training time (only ten minutes) than BiLSTM-
CNN-CRF (up to ten hours).
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FIGURE 3. SERs produced by the proposed CFTABS using a fixed α = 0.4 and jointly optimization of three parameters: U , B, and β.
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FIGURE 4. SERs produced by BS, BFO, CBSPS, CFTABS, and FkNNC for each fold and the average.

However, the proposed CFTABS is a bit unstable. It pro-
duces low SERs for Fold 1, Fold 2, Fold 3, and Fold 4 but it
gives a higher SER for Fold 5. A filtering procedure can be
introduced to select the possible legal-bigrams. For instance,
a swapped word "zdlug.dul" (OOV) that comes from the
formal word "struk.tur" (structure) should be detected as an
illegal bigram.

Besides, CFTABS also has difficulty to differentiates a
diphthong from a regular sequence of grapheme and suffix

since the input is a grapheme sequence (not phoneme se-
quence). For example, a diphthong 〈ei〉 is hard to be distin-
guished from a grapheme sequence of 〈e〉 and the suffix 〈i〉.
The detail investigation shows that most SER produced by
this case since Indonesian has up to eighteen suffixes [45].
This problem can be solved by adding a procedure of diph-
thong recognition.

Another crucial problem is that CFTABS is applied on
the syllable-level, which produces many OOV grams. Al-
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though three augmentation methods have been applied, the
OOV rate is still high. Therefore, a grapheme-level is po-
tentially applied to reduce the OOV rate. For instance, a
word "struktur" (structure) just produces a syllable-level
bigram of "struk.tur". But, it generates many grapheme-level
bigrams, trigrams, until 8-gram: "st", "tr", "ru", ... "struk.tur".
However, the use of grapheme-level approach will make the
complexity of the model slightly higher.

V. CONCLUSION
The proposed CFTABS is capable of improving the perfor-
mance of BS model, where the average SER is relatively
decreased by up to 37.63%. It is comparable to the FkNNC-
based syllabification and offer simplicity as well as flexibility
since it just calculates the combined probabilities of both
standard and augmented trigrams, bigrams, and unigrams
to accurately define the syllabification points. Meanwhile,
CFTABS gives a higher SER than BiLSTM-CNN-CFR but
it provides a faster training time. In the future, a particular
procedure to filter legal bigrams as well as unigrams can
be introduced to increase its performance. Another improve-
ment can also be performed by using grapheme-level grams,
instead of the syllable ones.
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ABSTRACT An n-gram syllabification model generally produces a high error rate for a low-resource
language, such as Indonesian, because of the high rate of out-of-vocabulary (OOV) n-grams. In this paper,
a combination of three methods of data augmentations is proposed to solve the problem, namely swapping
consonant-graphemes, flipping onsets, and transposing nuclei. An investigation on 50k Indonesian words
shows that the combination of three data augmentation methods drastically increases the amount of both
unigrams and bigrams. A previous procedure of flipping onsets has been proven to enhance the standard
bigram-syllabification by relatively decreasing the syllable error rate (SER) by up to 18.02%. Meanwhile,
the previous swapping consonant-graphemes has been proven to give a relative decrement of SER up to
31.39%. In this research, a new transposing nuclei-based augmentation method is proposed and combined
with both flipping and swapping procedures to tackle the drawback of bigram syllabification in handling the
OOV bigrams. An evaluation based on k-fold cross-validation (k-FCV), using k = 5, for 50 thousand
Indonesian formal words concludes that the proposed combination of the three procedures relatively
decreases the mean SER produced by the standard bigram model by up to 37.63%. The proposed model
is comparable to the fuzzy k-nearest neighbor in every class (FkNNC)-based model. It is worse than the
state-of-the-art model, which is developed using a combination of bidirectional long short-term memory
(BiLSTM), convolutional neural networks (CNN), and conditional random fields (CRF), but it offers a low
complexity.

INDEX TERMS Indonesian, flipping onsets, orthographic syllabification, swapping consonant-graphemes,
transposing nuclei

I. INTRODUCTION

A syllabification can be defined as a splitting a word into
syllables automatically. It is important not just in some

researches but also in many linguistics-based applications. It
is generally used in speech recognition [1] [2], speech syn-
thesis [3] [4] [5], emotion classification [6] [7], speaker’s di-
alect identification [8], speaking rate estimation [9], speaking
proficiency scoring [10], word count estimation [11], phone-
micization [12] [13], collecting a minimum sentence set in
developing speech corpus, as described in [14] [15] [16], etc.

The syllabification is preferably applied to graphemes
than phonemes because of both simplicity and flexibility.
Although a graphemic (or orthographic) syllabification gen-

erally gives lower accuracy [17] than the phonemic one [18],
it can be easily applied to both unseen words and named-
entities that have so many exceptions and ambiguities.

Most researchers prefer a statistical-based syllabification
much more than the rule-based one as it is simpler and
accurate [19]. For example, a simple Näive Bayes pro-
duces quite low SER of around 12.90% for the Romanian
language [20]. Some other statistical models use decision
tree [20] [21], treebank [22], random forest [20], neural net-
work [23] [24] [25] [26], support vector machine [20] [27],
finite-state transducers [28] [29], context-free grammars [30],
hidden Markov model [31], syllabification by analogy [19],
dropped-and-matched model [32], n-gram [33], conditional
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random fields [34] [35], nearest neighbour [17], and unsu-
pervised model [36].

The neural language models proposed in [37] [38] give
excellent results. A recent model based on BiLSTM-CNN-
CRF gives state-of-the-art result [39]. However, some n-
gram models produce comparable accuracies as well as offer
simplicity and fast processing [40] [41] [42].

In [33], the researchers prove that n-gram syllabification,
which is one of the simplest methods, reaches a low word
error rate (WER) of 0.15% for the phonemic sequences
of the Germany language. It can be generalized into any
language since it does not need any knowledge of a particular
language. However, the n-gram model is generally poor for
a tiny dataset producing many OOV n-grams. In [43], the
researcher proposes a simple combined standard bigram and
flipping onsets model (BFO) to tackle the OOV problem.
Compare to the standard bigram models, it can relatively
reduce the SER by 18.02%. However, its performance is not
stable for a tiny dataset.

In [44], the researcher proposes a simple backoff smooth-
ing procedure called swapping phonological similarities
(CBSPS) model, which can boost a bigram-based ortho-
graphic syllabification. It also performs better than the BFO
model. In this research, a new model called a combination of
flipping-onsets with standard-trigram and augmented-bigram
syllabification (CFTABS) is proposed to solve the problem.
The standard trigram is expected to perform better than bi-
gram. Three augmentation methods of swapping consonant-
graphemes, flipping onsets, and transposing nuclei are pro-
posed to reduce the OOV rate. Next, CFTABS is evaluated
and compared to BiLSTM-CNN-CRF [39] using 50 k In-
donesian words based on a 5-fold cross-validation scheme.

II. PRELIMINARY STUDY ON INDONESIAN
For many languages, those three methods of data augmen-
tations commonly create many illegal syllables for both un-
igrams and bigrams. But, for other simpler languages with
a nearly one-to-one grapheme-to-phoneme mapping, such as
Indonesian, they generate many legal ones. Swapping several
consonant-graphemes in a word for all combinations may
generate some new words. It is performed by replacing them
with other similar ones in the same manner and/or place of ar-
ticulations. For example, swapping consonant-graphemes in
an original formal word "be.ras" (rice) generates three other
words: "be.las" (mercy), "pe.ras" (squeeze), and "pe.las"
(pity) with no shifting the syllabification boundaries as both
〈b〉 and 〈p〉 are pronounced as the plosive-bilabial phonemes
while 〈r〉 and 〈l〉 are pronounced as the trill and lateral-dental
phonemes. Flipping two onsets in the original word yields
another word "re.bas" (boil) without shifting the syllabifi-
cation point. Flipping two onsets in the three consonants-
swapped words produces three other words: "le.bas" (too
ripe), "re.pas" (fragile), and "le.pas" (free). Transposing two
nuclei in the original word produces another new word,
"ba.res" (OOV). Transposing two nuclei in all consonants-
swapped and onsets-flipped words produces seven new

words: "ba.les" (reply), "pa.res" (OOV), "pa.les" (discor-
dant), "re.bas" (OOV), "la.bes" (OOV), "ra.pes" (OOV),
and "la.pes" (OOV). Thus, in this case, the three methods
augment a short original formal word "be.ras" (rice) into nine
new formal words and six OOV words.

Furthermore, the Indonesian language has 18 prefixes [45].
Swapping some graphemes in the prefixes produces many
more other legal suffixes than the illegal ones called noises, as
described in [44]. A preliminary study shows that the dataset
of 50 k Indonesian words produces up to 161,981 unigrams.
Applying three augmentation procedures to the dataset gener-
ates up to 9,620,054 augmented unigrams (87.20% are legal).
The 50 k words generate a total of 111,412 bigrams. The aug-
mentation procedures yield 7,308,702 augmented bigrams
(77.26% are legal). Finally, the 50 k words generate a total
of 136,812 syllable trigrams. In this research, the augmented
syllable trigrams are not generated since they produce a high
sparsity of trigrams, and consequently, they are not useful in
the syllabification process. Based on a particular criterion,
such as a phonotactic rule, those grams can be classified into
two classes: legal and illegal. However, it is quite hard to
recognize them as legal or illegal. Therefore, CFTABS are
designed to use all generated syllable unigrams and bigrams
without filtering to focus this research on examining how
much the proposed CFTABS decreases the SER.

III. RESEARCH METHOD
The proposed model’s training process can be easily ex-
plained as the combination of normal (or standard) and
swapped syllabifications. A dataset containing pairs of words
and their syllabification points is scanned to create two lists
of normal syllable unigrams and bigrams, as well as two lists
of augmented syllable unigrams and bigrams, as illustrated in
Fig. 1.

Next, the normal and swapped unigrams, as well as the
normal and swapped bigrams, are used to test the model
to maximize the final score to produce the best syllable
sequence as the output, as illustrated in Fig. 2. For example,
let a given grapheme sequence is 〈beras〉 (rice). First, two
vowel-graphemes 〈e〉 and 〈a〉 are searched and their positions
are listed as {2, 4}. Next, two candidates syllabifications are
then generated, i.e. 〈be.ras〉 and 〈ber.as〉. Flipping onsets in
each candidate is then performed. The scores of each can-
didate for both standard and flipped syllabifications are then
calculated and finally, a candidate having the biggest score
is chosen as the output. For example, the candidate 〈be.ras〉
obtains the biggest score, and consequently, it is selected as
the best syllabification. It can be easily explained as follows.
Although both original bigram 〈be.ras〉 and its flipped ver-
sion 〈re.bas〉 do not appear in the training set, they may come
from other words that are augmented using the thee proposed
methods and listed in the table of augmented bigrams, such
as "be.las" (mercy), "pe.ras" (squeeze), "pe.las" (pity), and
other words described in Section II. Hence, this candidate has
a high score (probability). Meanwhile, the other candidate
〈ber.as〉 and its flipped version 〈er.bas〉 cannot come from
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Pairs of word and syllabification:
- beras        be.ras

- berasa      be.ra.sa

Create a table of syllable-unigrams

Create two tables of syllable-bigrams 
and syllable-trigrams

Table of syllable-unigrams & frequencies:
- be 2

- ra 1

- ras 1
- sa 1

Table of syllable-bigrams & frequencies:
- <s>.be 2

- be.ras 1

- ras.</s> 1
- be.ra 1
- ra.sa 1

- sa.</s> 1

Table of syllable-trigrams & frequencies:
- <s>.be.ras 1

- be.ras.</s> 1
- <s>.be.ra 1
- ra.sa.</s> 1

- be.ra.sa 1

Create a table of augmented-unigrams

Create a table of augmented-bigrams

Table of augmented-unigrams & frequencies:
- ba 6 - le 6 - ra 5
- bas 2 - les 2 - ras 1
- be 4 - pa 6 - re 6

- bes 2 - pas 2 - res 2
- la 6 - pe 6 - sa     15
- las 2 - pes 2

Table of augmented-bigrams & frequencies:
- <s>.ba     4 - pes.</s>  2 - be.la 1      - le.pas   1      - pe.sa   2
- <s>.be     2 - las.</s>   2 - be.las 1      - le.sa     2      - ra.be    1

- <s>.pa     4 - les.</s>   2 - be.sa 2      - pa.le     1      - ra.bes  1
- <s>.pe     4 - ras.</s>   1 - la.be 1      - pa.les   1      - ra.pe    1
- <s>.la      4 - res.</s>   2 - la.bes 1      - pa.re   1      - ra.pes  1
- <s>.le 4 - sa.</s>   15 - la.pe 1      - pa.res   1      - ra.sa    1

- <s>.ra 4 - ba.le    1 - la.pes 1      - pa.sa    2      - re.ba    1
- <s>.re 4 - ba.les   1 - la.sa 2      - pe.la     1      - re.bas  1
- bas.</s>  2 - ba.re        1 - le.ba 1      - pe.las   1      - re.pa    1

- bes.</s>  2 - ba.res      1 - le.bas 1      - pe.ra  1      - re.pas  1
- pas.</s>  2 - ba.sa       2 - le.pa 1      - pe.ras   1      - re.sa    2

Create a list of normal syllabifications

List of all normal-syllabifications:
- be.ras

- be.ra.sa

Data augmentation using combination of 
swapping consonant-graphemes, flipping 

onsets, and transposing nuclei

List of all augmented-syllabifications:

- be.las, pe.ras, pe.las, re.bas, le.bas, re.pas, le.pas,
ba.res, ba.les, pa.res, pa.les, ra.bes, la.bes, ra.pes, la.pes

- be.la.sa, pe.ra.sa, pe.la.sa, re.ba.sa, le.ba.sa, re.pa.sa, le.pa.sa,
ba.re.sa, ba.le.sa, pa.re.sa, pa.le.sa, ra.be.sa, la.be.sa, ra.pe.sa, la.pe.sa

FIGURE 1. Training process of the proposed combination of flipping-onsets
with standard-trigram and augmented-bigram syllabification (CFTABS).

Detect vowel positions

A grapheme sequence: <beras>

Generate all possible standard- and their flipped onsets-
syllabifications

Vowel positions: {2, 4}

Candidates standard- and flipped onsets-syllabifications:
1. <be.ras>, <re.bas>

2. <ber.as>, <er.bas>

Maximize the score of Stabs using Equation (5)

A syllable sequence with maximum Stabs score: <be.ras>

Search each candidate in three 

tables of syllable-trigrams, bigrams, 
and unigrams, then calculating the 
Sts score using Equation (2) 

Searc each candidate in two tables 

of augmented- bigrams and 
unigrams, then calculating the Sabs

score using Equation (4) 

FIGURE 2. Testing process of the proposed CFTABS model.

other augmented words listed in the table of augmented
bigrams so that it has a lower score than the first candidate.
Therefore, the proposed CFTABS model is able to syllabify
the given grapheme sequence 〈beras〉 into 〈be.ras〉.

A. TRIGRAM-SYLLABIFICATION MODEL
A trigram-syllabification (TS) is a longer version of a bigram-
syllabification (BS) described in [44]. It works by maximiz-
ing the likelihood (or probability) of a given sequence of
syllables. A trigram-syllabification probability of L tokens
P (w1, w2, ..., wL) is commonly calculated using a proba-
bility chain. This probability is commonly estimated using
many smoothing methods to tackle the OOV problem. One
of the smoothing methods is the Stupid Backoff described
in [46], where the estimated probability called a score S
(since it can be greater than 1) is formulated as

P (w1, w2, ..., wL) =

L∏
i=1

P (wi|wi−2wi−1)

≈
L∏
i=1

S(wi|wi−2wi−1),

(1)

Sts(wi|wi−2wi−1) =


f(wi−2wi−1wi)
f(wi−2wi−1)

if f(wi−2wi−1wi) > 0

αSbs(wi|wi−1) otherwise

(2)

Sbs(wi|wi−1) =


f(wi−1wi)
f(wi−1)

if f(wi−1wi) > 0

α f(wi)
N otherwise

(3)

where Sts and Sbs are the scores of both trigram and bigram,
respectively, f(wi−2wi−1wi), f(wi−1wi), and f(wi) are the
trigram, bigram, and unigram frequencies happen in the train-
set, respectively, wi is the ith syllable (or unigram), wi−1wi
is a bigram that is built from two syllables with indices of
(i-1) and i, wi−2wi−1wi is a trigram that comes from three
two syllables with indices of (i-2), (i-1), and i, α represents
the backoff factor that commonly recommend to be 0.4 as
described in [46], and N is the total grams in the trainset.

In general, TS produces quite low performance when
the trainset is tiny with many OOV syllables [35]. Another
technique to improve the performance of TS is a procedure
of decreasing the OOV rate.

B. TFO MODEL
In this research, the combined trigram and flipping onsets-
based syllabification model (TFO) is an improved version of
the bigram and flipping onsets-based syllabification model
(BFO) described in [43]. TFO is a modification of the TS,
which is explained in subsection III-A, by adding a simple
procedure of flipping two first onsets in a word. Similar to
the BFO described in [43], here TFO is easily described in
the pseudocode below:

1) Detect positions of both vowels and diphthongs in the
input grapheme sequence

2) Generate C possible bigram-syllabifications (all can-
didates) and then calculate their scores Si using TS
model, where i = 1, 2, ..., C;
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3) For each candidate consisting of two or more sylla-
bles, generate a new candidate by flipping their onsets
contained in the first two syllables and then define the
average score S̄i calculated from both scores of TS and
its flipped onsets; and

4) Choose the ith candidate that has the biggest S̄i as the
output.

C. CFTABS MODEL
In this research, the three proposed augmentation methods
function to reduce the number of OOV grams in BS. They
create a variant model, which is called augmented bigram-
syllabification (ABS), with a new score formulated as

Sabs(wi|wi−1) =


B fs(wi−1wi)

fs(wi−1)
if fs(wi−1wi) > 0

Uα fs(wi)
Ns

otherwise,
(4)

where fs(wi−1wi) and fs(wi) are the augmented- bigram
and unigram frequencies happen in the normal trainset, wi
is the ith syllable (or unigram), wi−1wi is a bigram that is
composed from two syllables with indices of (i-1) and i, Ns
represents the number of grams in the augmented training-
set, B and U are the weights of augmented- bigram and
unigram, respectively, and α is the backoff factor in Equation
3. As a bigram plays a more critical role in syllabifying a
word than the unigram, the value ofB should be much bigger
than U .

Next, a combined trigram and augmented bigram syl-
labification (TABS) model is created using a score Stabs
formulated as

Stabs = Sts + βSabs (5)

where Sts is the trigram-syllabification score in Equation
(2) and Sabs is the augmented-bigram-syllabification score
in Equation (4), and β is the weight that is used in the
augmented-bigram score.

Finally, both TFO and TABS models are then combined
to create CFTABS, which takes into account unigrams, bi-
grams, and trigrams (built from the original words), and
both augmented-unigrams and augmented-bigrams (that are
developed from the augmented words). The detailed expla-
nation of CFTABS with a simple example of syllabifying a
word is illustrated in Fig 2.

D. THREE AUGMENTATION METHODS
Since most Indonesian graphemes are pronounced as the
same phonemes, some onset graphemes can be swapped
based on the phoneme categorization in [45]. Table 1 illus-
trates some Indonesian graphemes and their swaps. There
are 14 graphemes and their swaps, each of which is simply
mapped into those phoneme categorizations. This mapping
is possible due to their strong relation to the corresponding
phonemes [45] [47]. A word that consists of one or more

TABLE 1. Graphemes and their swaps based on phoneme category

Phoneme category Gr. Sw, Example
Plosive-Bilabial: b p ba.ku (standard)
{b, p} → pa.ku (nail)

p b pe.ri (fairy)
→ be.ri (give)

Plosive-Dental: d t de.bu (dust)
{d, t} → te.bu (cane)

t d ta.yang (show)
→ da.yang (court lady)

Plosive-Velar: g k ga.bung (join)
{g, k} → ka.bung (mourning)

k g ka.mis (thursday)
→ ga.mis (clothes)

Affricative-Palatal: c j ce.ruk (niche)
{c, j} → je.ruk (orange)

j c ja.wat (stretched out)
→ ca.wat (loincloth)

Fricative-Labiodental: f v fo.li (thin metal)
{f, v} → vo.li (volley)

v f vi.si (vision)
→ fi.si (fission)

Fricative-Dental: s z a.sam (acid)
{s, z} → a.zam (aim)

z s ze.ni (soldier)
→ se.ni (art)

Thrill/Lateral-Dental: l r lang.ka (rare)
{l, r} → rang.ka (frame)

r l ram.bu (sign)
→ lam.bu (canoe)

graphemes in Table Table 1 can be swapped to produce one
or more other words.

For example, both 〈b〉 and 〈p〉 are pronounced as plosive-
bilabial phonemes. In general, swapping 〈b〉 into 〈p〉 gener-
ates some new legal unigrams and bigrams, such as "ba.ku"
(standard) is swapped to be "pa.ku" (nail), "ba.wang" (onion)
to be "pa.wang" (handler), "be.ta" (I am) to be "pe.ta" (map),
etc. Swapping the grapheme 〈p〉 into 〈b〉 also generally
creates several new syllable unigrams and bigrams, such as
"pe.ri" (fairy) is swapped to be "be.ri" (give), "pa.da" (on) to
be "ba.da" (after), "pi.ta" (tape) to be "bi.ta" (bytes), etc.

The grapheme 〈d〉 is in the same category with grapheme
〈t〉, i.e. plosive-dental. Swapping the grapheme 〈d〉 into 〈t〉
generally produces some new legal syllable unigrams and
bigrams, such as "de.bu" (dust) is swapped to be "te.bu"
(cane), "de.bar" (flutter) to be "te.bar" (spread out), "da.ra"
(virgin) to be "ta.ra" (the same level), etc. Swapping the
grapheme 〈t〉 into 〈d〉 also generally creates several new
syllable unigrams and bigrams, such as "ta.yang" (show) can
be swapped to be "da.yang" (court lady), "ta.pa" (asceticism)
is swapped to be "da.pa" (ransom slaves), "ta.rah" (flat) to be
"da.rah" (blood), etc.

Both 〈g〉 and 〈k〉 are plosive-velar. Swapping grapheme 〈g〉
into 〈k〉 generates several legal unigrams and bigrams, such
as "ga.bung" (join) is swapped to be "ka.bung" (mourning),
"ge.tar" (shakes) to be "ke.tar" (daunted), "gi.la" (crazy)
to be "ki.la" (stake), etc. Swapping the grapheme 〈k〉 into
〈g〉 also generally creates several new syllable unigrams and
bigrams, such as "ka.mis" (thursday) to be "ga.mis" (clothes),
"ke.mit" (night guard) is swapped to be "ge.mit" (poke),
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"ka.ri" (curry) to be "ga.ri" (handcuffs), etc.
The grapheme 〈c〉 is in the same category with grapheme

〈j〉, i.e. affricative-palatal. Swapping the grapheme 〈c〉 into
〈j〉 commonly produces some legal syllable unigrams and
bigrams, such as "ce.ruk" (niche) is swapped to be "je.ruk"
(orange), "ca.ri" (search) is swapped to be "ja.ri" (finger),
"ca.har" (liquid) to be "ja.har" (loud), etc. Swapping the
grapheme 〈j〉 into 〈c〉 also generally creates several new
syllable unigrams and bigrams, such as "ja.wat" (stretched
out) is swapped to be "ca.wat" (loincloth), "ja.ra" (small
drill) to be "ca.ra" (way), "ja.ran" (horse) to be "ca.ran"
(woman fighting), etc.

In [45], the authors state that Indonesian does not have
phoneme /v/, where the grapheme 〈v〉 is always pronounced
as phoneme /f/ so that it can be swapped into 〈f〉. For instance,
the word "fo.li" (thin metal) is swapped as "vo.li" (volley) and
"vi.si" (vision) is swapped as "fi.si" (fission).

Both graphemes 〈s〉 and 〈z〉 are in the same category:
fricative-dental. In general, swapping the grapheme 〈s〉 into
〈z〉 generates some new legal syllable unigrams and bigrams,
such as "a.sam" (acid) is swapped to be "a.zam" (aim).
Swapping the grapheme 〈z〉 into 〈s〉 converts a word "ze.ni"
(soldier) into "se.ni" (art).

Finally, both graphemes 〈l〉 and 〈r〉 are considerably in
the same category: thrill/lateral-dental. In general, swapping
the grapheme 〈s〉 into 〈z〉 generates some new legal syllable
unigrams and bigrams, such as "lang.ka" (rare) is swapped
to be "rang.ka" (frame). Swapping the grapheme 〈z〉 into 〈s〉
converts a word "ram.bu" (sign) into "lam.bu" (canoe).

However, swapping the graphemes does not always pro-
duce other formal words. Sometimes, it creates an illegal
word. For instance, swapping grapheme "p" in the word
"pa.ha" (thigh) creates a new word "ba.ha", which is illegal
(OOV). But, the interesting fact is that the new word is a sub-
word that comes from another word "ba.ha.gi.a" (happy). Of
course, the swapped words enlarge the number of bigrams.
Thus, the grapheme swapping can be a data augmentation
method that is expected to enhance the score formulated in
Equation (5) to give a better syllabification.

Furthermore, Table 2 shows some examples of augmented
words that are built from two original words without chang-
ing the syllabification points. First, the original word "be.ri"
is swapped for all combinations to produce three new words:
"be.li" (buy), "pe.ri" (fairy), and "pe.li" (OOV). Both original
and swapped words are then augmented using the flipping on-
sets to generate four OOV words: "re.bi", "le.bi", "re.pi", and
"le.pi". Finally, all the original, swapped, and flipped words
are augmented using transposing their nuclei to produce eight
OOV words: "bi.re", "bi.le", "pi.re", "pi.le", "ri.be", "li.be",
"ri.pe", and "li.pe". Thus, this original word is augmented
to be 15 new words, where only two words are formally
found in the Indonesian dictionary while the rests are OOV
words. But, an interesting phenomenon is the OOV words
can be some sub-words for many other formal words. For
example, the OOV word "pe.li" is a sub-word that comes
from other words: "pe.li.as" (spell), "pe.li.cin" (lubricant),

"pe.li.ta" (light), etc. The second formal word "ba.tu"is also
augmented into 15 new words, where seven words are formal
and the rests are OOV words that can also be some sub-words
for many other formal words. Therefore, no doubt that the
augmented words are capable of increasing the number of
both unigrams and bigrams, which is expected to make the
cbsps score in Equation (5) more accurate.

TABLE 2. Example of some augmented words that are generated using
combination of swapping consonants-graphemes, flipping onsets, and
transposing nuclei in the original words without changing the points of
syllabifications

Original word Augmented words
be.ri (give) be.li (buy), pe.ri (fairy), pe.li (OOV), re.bi (OOV),

le.bi (OOV), re.pi (OOV), le.pi (OOV), bi.re
(OOV), bi.le (OOV), pi.re (OOV), pi.le (OOV),
ri.be (OOV), li.be (OOV), ri.pe (OOV), li.pe
(OOV)

ba.tu (stone) ba.du (checkered patterned), pa.tu (small pickaxe),
pa.du (coherent), ta.bu(taboo), da.bu (OOV), ta.pu
(OOV), da.pu (OOV), bu.ta (blind), bu.da (OOV),
pu.ta (OOV), pu.da (OOV), tu.ba (tube), du.ba
(OOV), tu.pa (OOV), du.pa (incense)

IV. RESULT AND DISCUSSION
The three parameters of the proposed CFTABS: U , B, and
β are jointly optimized using a fixed α = 0.4 as suggested
in [46]. The result is illustrated in Fig. 3. The optimum
parameters are U = 0.1, B = 100, and β = 0.75 that give
the lowest SER of 2.37%. This result proves the hypothesis
explained in subsection III-C, where the value of B should
be much bigger than U since bigram is more critical than
unigram in syllabifying a word. The optimum β = 0.75
also makes sense because the percentage of legal bigrams
produced by the proposed augmentation methods is 77.26%,
as stated in Section II.

The CFTABS is then compared to five other mod-
els: BS [43], BFO [43], CBSPS [44], FkNNC [17], and
BiLSTM-CNN-CRF [39]. Evaluation based on 5-FCV using
a dataset consisting of 50 k Indonesian words explained
in [17] [43] [44].

The result in Fig. 4 shows that CFTABS better than
three other bigram-based models but worse than FkNNC and
BiLSTM-CNN-CRF. It produces SER of 2.37% that is lower
than BS, BFO, and CBSPS with average SER of 3.80%,
3.11%, and 2.61%, respectively. It means that CFTABS rel-
atively reduces the average SER of BS by up to 37.63%.
FkNNC gives a slightly lower SER of 2.27%. Meanwhile,
BiLSTM-CNN-CRF reaches the lowest SER of 0.44%.

Based on the results, the proposed CFTABS is comparable
to FkNNC. However, by offering a low complexity, it can
be favored than FkNNC. It just computes the probabilities
of tens or fewer candidates based on both original and aug-
mented n-grams to decide a syllabification point. Meanwhile,
FkNNC should: firstly, computes the dissimilarities between
a candidate pattern of syllabification and the others in the
trainset (up to 250 k patterns); secondly, chooses k neighbors
in each class; finally, select the smallest dissimilarity to make
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FIGURE 3. SERs produced by the proposed CFTABS using a fixed α = 0.4 and jointly optimization of three parameters: U , B, and β.
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FIGURE 4. SERs produced by BS, BFO, CBSPS, CFTABS, and FkNNC for each fold and the average.

a decision. Compared to BiLSTM-CNN-CRF in terms of
complexity, the proposed CFTABS is also better. It needs
much lower training time (only ten minutes) than BiLSTM-
CNN-CRF (up to ten hours).

However, the proposed CFTABS is a bit unstable. It pro-
duces low SERs for Fold 1 to Fold 4, but it gives a higher
SER for Fold 5. A filtering procedure can be introduced to
select the possible legal-bigrams. For instance, a swapped
word "zdlug.dul" (OOV) that comes from the formal word

"struk.tur" (structure) should be detected as an illegal bigram.

Besides, CFTABS also has difficulty to differentiates a
diphthong from a regular sequence of grapheme and suffix
since the input is a grapheme sequence (not phoneme se-
quence). For example, a diphthong 〈ei〉 is hard to be distin-
guished from a grapheme sequence of 〈e〉 and the suffix 〈i〉.
The detailed investigation shows that most SER produced by
this case since Indonesian has up to eighteen suffixes [45].
This problem can be solved by adding a procedure of diph-
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thong recognition.
Another crucial problem is that CFTABS is applied on

the syllable-level, which produces many OOV grams. Al-
though three augmentation methods have been applied, the
OOV rate is still high. Therefore, a grapheme-level is poten-
tially applied to reduce the OOV rate. For instance, a word
"struktur" (structure) just produces a syllable-level bigram of
"struk.tur". But, it generates many grapheme-level bigrams,
trigrams, until 8-gram: "st", "tr", "ru", ... "struk.tur". How-
ever, the use of a grapheme-level approach will make the
complexity of the model slightly higher.

V. CONCLUSION
The proposed CFTABS is capable of improving the perfor-
mance of the BS model, where the average SER is relatively
decreased by up to 37.63%. It is comparable to the FkNNC-
based syllabification and offers simplicity as well as flexibil-
ity since it just calculates the combined probabilities of both
standards and augmented trigrams, bigrams, and unigrams
to define the syllabification points accurately. Meanwhile,
CFTABS gives a higher SER than BiLSTM-CNN-CFR, but
it provides a faster training time. In the future, a particular
procedure to filter legal bigrams and unigrams can be intro-
duced to increase its performance. Another improvement can
also be performed by using grapheme-level grams, instead of
the syllable ones.
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