
Evidence of correspondence

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

1. First submission (23 October 2020)

2. LoA with Minor Revision (27 November 2020)

3. Responses to Reviewers, Final submission (19 Dec 2020)

4. LoA with Fully Accepted (09 January 2021)

5. Proof Reading (16 January 2021)

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Submission to Journal of King Saud University - Computer and Information
Sciences - manuscript number
1 message

Journal of King Saud University - Computer and Information Sciences
<em@editorialmanager.com>

Fri, Oct 23, 2020 at 8:26
PM

Reply-To: Journal of King Saud University - Computer and Information Sciences <jksu-cis@elsevier.com>
To: Suyanto Suyanto <suyanto@telkomuniversity.ac.id>

This is an automated message.

Manuscript Number: JKSUCIS-D-20-01239
Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization

Dear Dr. Suyanto,

Your above referenced submission has been assigned a manuscript number: JKSUCIS-D-20-01239.

To track the status of your manuscript, please log in as an author at https://www.editorialmanager.com/jksucis/, and
navigate to the "Submissions Being Processed" folder.

Thank you for submitting your work to this journal.

Kind regards,
Journal of King Saud University - Computer and Information Sciences

More information and support

You will find information relevant for you as an author on Elsevier’s Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/
publishing/
Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more
about Editorial Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and
24/7 by live chat and email

__
In compliance with data protection regulations, you may request that we remove your personal registration details at
any time. (Use the following URL: https://www.editorialmanager.com/jksucis/login.asp?a=r). Please contact the
publication office if you have any questions.

https://www.editorialmanager.com/jksucis/
https://www.elsevier.com/authors
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
https://service.elsevier.com/app/home/supporthub/publishing/
https://www.editorialmanager.com/jksucis/login.asp?a=r

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Confirming handling editor for submission to Journal of King Saud University -
Computer and Information Sciences
1 message

Journal of King Saud University - Computer and Information Sciences
<em@editorialmanager.com>

Fri, Oct 23, 2020 at 8:26
PM

Reply-To: Journal of King Saud University - Computer and Information Sciences <jksu-cis@elsevier.com>
To: Suyanto Suyanto <suyanto@telkomuniversity.ac.id>

This is an automated message.

Manuscript Number: JKSUCIS-D-20-01239  

Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization

Dear Dr. Suyanto,    

The above referenced manuscript will be handled by Editor-in-Chief Professor Nasser-Eddine Rikli .

To track the status of your manuscript, please log into Editorial Manager at https://www.editorialmanager.com/jksucis/.

Thank you for submitting your work to this journal.    

Kind regards,    

Journal of King Saud University - Computer and Information Sciences

More information and support 

You will find information relevant for you as an author on Elsevier’s Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/
publishing/
Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more
about Editorial Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and
24/7 by live chat and email

__
In compliance with data protection regulations, you may request that we remove your personal registration details at
any time. (Use the following URL: https://www.editorialmanager.com/jksucis/login.asp?a=r). Please contact the
publication office if you have any questions.

https://www.editorialmanager.com/jksucis/
https://www.elsevier.com/authors
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
https://service.elsevier.com/app/home/supporthub/publishing/
https://www.editorialmanager.com/jksucis/login.asp?a=r

Journal of King Saud University - Computer and Information Sciences

Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian
Phonemicization
--Manuscript Draft--

Manuscript Number:

Article Type: Full Length Article

Keywords: grapheme-to-phoneme conversion; Indonesian language; n-gram tagger; phonotactic
rules; stemmer

Corresponding Author: Suyanto Suyanto
Telkom University
INDONESIA

First Author: Suyanto Suyanto

Order of Authors: Suyanto Suyanto

Andi Sunyoto

Rezza Nafi Ismail

Ema Rachmawati

Warih Maharani

Abstract: A phonemicization or grapheme-to-phoneme conversion (G2P) model plays an
important role in various applications of computational linguistics. The deep learning
(DL)-based state-of-the-art G2P model generally gives low phoneme error rate (PER)
as well as word error rate (WER) for high-resource languages, such as English and
European, but not for low-resource languages. Therefore, some conventional machine
learning (ML)-based G2P models incorporated with specific linguistic knowledge are
preferable for low-resource languages. However, these models are poor for several
low-resource languages because of various issues. For instance, an Indonesian G2P
model works well for roots but gives a high PER for derivatives. Most errors come from
the ambiguities of some roots and derivative words containing four prefixes: <ber>,
<meng>, <peng>, and <ter>. In this research, an Indonesian G2P model based on n-
gram tagger combined with stemmer and phonotactic rules (NGTSP) is proposed to
solve those problems. An investigation based on 5-fold cross-validation, using 50 k
formal Indonesian words, informs that the proposed NGTSP gives a much lower PER
of 0.78% than the Transformer-based G2P (1.14%), which is one of the state-of-the-art
deep learning-based models. Besides, it also provides a much faster processing time.

Suggested Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

October 20, 2020

Dear Professor Nasser-Eddine Rikli,

I wish to submit a full manuscript of 20 pages entitled “Stemmer and Phonotactic Rules to
Improve n-Gram Tagger-Based Indonesian Phonemicization” for consideration by the Journal
of King Saud University - Computer and Information Sciences.

This manuscript is written based on our original research. In this manuscript, a new Indonesian
G2P model based on n-gram tagger combined with stemmer and phonotactic rules (NGTSP),
is proposed to solve the problems regarding the ambiguities of some roots and derivative
words containing prefixes <ber>, <meng>, <peng>, and <ter>, where the grapheme <e> is
sometimes incorrectly phonemicized. A 5-fold cross-validation using 50 k formal Indonesian
words concludes that combining both stemmer and phonotactic rules in NGTSP gives a
relative reduction by up to 35.93%, which obtains the lowest mean PER of 0.78%. Compared
to the state-of-the-art Transformer-based G2P model that produces a mean PER of 1.14%,
NGTSP can be claimed as the best model for the low-resource Indonesian language. Besides,
it also provides a much faster processing time. Furthermore, this manuscript has been checked
using both Grammarly Premium and iThenticate with a quite low similarity index of 18%
(without exclude any source).

Thank you for your consideration of this manuscript. Please address all correspondence
concerning this manuscript to me at suyanto@telkomuniversity.ac.id.

Sincerely,

Suyanto
Telkom University
Jl. Telekomunikasi Terusan Buah Batu Bandung 40257, Indonesia

Cover Letter

mailto:suyanto@telkomuniversity.ac.id

∗Corresponding author. Tel.: +62-812-845-12345. Email: suyanto@telkomuniversity.ac.id

Preprint submitted to Journal of LATEX Templates October 20, 2020

Title Page (with Author Details)

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

Suyanto Suyantoa,∗, Andi Sunyotob, Rezza Nafi Ismaila, Ema Rachmawatia,
Warih Maharania

aSchool of Computing, Telkom University, Bandung, Indonesia
bFaculty of Computer Science, Universitas Amikom Yogyakarta, Indonesia

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

Abstract

A phonemicization or grapheme-to-phoneme conversion (G2P) model plays an

important role in various applications of computational linguistics. The deep

learning (DL)-based state-of-the-art G2P model generally gives low phoneme

error rate (PER) as well as word error rate (WER) for high-resource languages,

such as English and European, but not for low-resource languages. Therefore,

some conventional machine learning (ML)-based G2P models incorporated with

specific linguistic knowledge are preferable for low-resource languages. However,

these models are poor for several low-resource languages because of various is-

sues. For instance, an Indonesian G2P model works well for roots but gives

a high PER for derivatives. Most errors come from the ambiguities of some

roots and derivative words containing four prefixes: 〈ber〉, 〈meng〉, 〈peng〉, and

〈ter〉. In this research, an Indonesian G2P model based on n-gram tagger com-

bined with stemmer and phonotactic rules (NGTSP) is proposed to solve those

problems. An investigation based on 5-fold cross-validation, using 50 k formal

Indonesian words, informs that the proposed NGTSP gives a much lower PER

of 0.78% than the Transformer-based G2P (1.14%), which is one of the state-

of-the-art deep learning-based models. Besides, it also provides a much faster

processing time.

Keywords: grapheme-to-phoneme conversion, Indonesian, n-gram tagger,

phonotactic rules, stemmer

Preprint submitted to Journal of LATEX Templates October 23, 2020

Manuscript (without Author Details) Click here to view linked References

https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=5452&rev=0&fileID=65265&msid=f6d28ab8-2d50-43fd-878b-f619f996326a
https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=5452&rev=0&fileID=65265&msid=f6d28ab8-2d50-43fd-878b-f619f996326a

1. Introduction

A phonemicization or G2P is commonly defined as a process of converting

a word into its pronunciation. It plays important roles in automatically recog-

nizing speech [1], synthesizing speech [2, 3], developing phonemic syllabification

model [4, 5], and many other applications in the speech and linguistics areas [6].5

A G2P is generally developed using a rule-based approach [7, 8], conventional

ML-based approach [9, 10, 11], and DL-based approach [12, 13, 14]. The rule-

based G2P models generally give high performance for some languages with

limited simple rules, but it produces low accuracy for the complex ones. In [7],

a Hindi rule-based G2P was reported to give a low PER and WER of 0.20%10

and 0.62%, respectively, which is competitive with a decision tree (DT)-based

conventional ML that produced 0.07% and 0.48% for a small dataset of 10,713

Hindi words. In [8], an Arabic rule-based G2P obtained an error rate of 0.81%

for 3,440 words.

The conventional ML-based G2P models commonly achieve acceptable error15

rates, even for some quite complex languages using low computational resources.

In [9], two-stage processing of conditional random fields (CRF) successfully

converted a large dataset of Thai words into their pronunciations with WER of

9.94%. In [10], a joint sequence model produced PER and WER of 1.7% and

10.0%, respectively, for a large dataset of Myanmar. In [11], a dynamic finite20

generalization (DFGA)-based English G2P achieved PER and WER of 6.86%

and 26.49%, respectively, for a dataset of 27,040 words.

Meanwhile, the DL-based G2P models generally produce state-of-the-art

performances for most languages in the world. It is able to generalize the

sequence-to-sequence dataset very well. For example, in [10], a Transformer-25

based G2P gives both PER and WER of 1.8% and 10.4%, respectively, for a

large Myanmar dataset. In English, a G2P model, which is based on a convolu-

tional neural network (CNN) and bidirectional long short-term memory (BiL-

STM), obtains PER of 4.81% and WER of 25.13% for the CMUDict dataset

[12]. This model contains two components: an encoder (using CNN with resid-30

2

ual connections) and a decoder (using Bi-LSTM). This model can handle short

(less than six characters), medium (six to ten characters), and long (more than

ten characters) words. In other words, it performs well on all range dependen-

cies. Furthermore, it gives more phoneme errors in the first half of the words

than in the second half. The errors in the first half can decrease the accuracy in35

the next half. The correct phoneme in the first half does not increase the accu-

racy in the second one [12]. Another model based on Transformer 4×4 achieves

similar PER and WER of 5.23% and 22.1% for the dataset [13]. Finally, in [14],

a novel agreement on target-bidirectional RNN produces a competitive PER of

5.00% and the lowest WER of 21.2% for the dataset. It is slightly better to40

handle the long words than both CNN-BiLSTM and Transformer 4 × 4.

In some cases, the DL-based G2P can be applied to low-resource languages

[15]. Besides, it can also be massively used for multilingual G2P models [16].

Unfortunately, it requires high computation resources to train the model for

hundreds or even thousands of epochs. Therefore, it should be developed by45

considering the size of the available dataset. For low-resource languages, such

as Indonesian, it can be built using either a rule-based or a conventional ML-

based approach. In contrast, for high-resource languages, such as English and

European, it is better to be developed using a DL-based approach.

However, a combination of the three approaches is possible to be created.50

Some specific linguistic rules can be incorporated into either conventional ML

or DL to obtain a better performance. For example, in [17], applying the lin-

guistic knowledge in Khmer improves the performance of weighted finite-state

transducer (WFST), where the PER can be reduced from 23.2% to 11.1%. In

[4], inserting both syllabification and lexical stress into a sequence-to-sequence55

Romanian G2P obtains a relatively low PER of up to 0.38%.

Meanwhile, in the case of the Indonesian language, combining a set of phono-

tactic rules into a pseudo nearest neighbor rule (PNNR)-based G2P achieves a

low PER of 0.93% for 50 k words [18]. Combining points of syllabifications

into the model relatively reduces the PER to be 0.83% [19]. Unfortunately,60

it produces many errors that are caused by the ambiguities of some roots and

3

derivatives that contain four prefixes: 〈ber〉, 〈meng〉, 〈peng〉, and 〈ter〉. Those

prefixes generate many words that have conversion ambiguity with the roots

[18], such as a grapheme 〈e〉 in a root ’berang ’ (irascible) is pronounced as /E/,

but 〈e〉 in a derivative word ’berangin ’ (windy) is converted into /@/ because65

’ber’ is a prefix for the basic word ’angin ’ (wind) that is always pronounced as

/b@r/; the grapheme 〈e〉 in the root ’memang ’ (indeed) is pronounced as /E/, but

〈e〉 in the derivative word ’memangsa ’ (to prey) is converted into /@/ because

’me’ is a prefix for the basic word ’mangsa ’ (prey) that is pronounced as /m@/;

the grapheme 〈e〉 in the root ’peroksida ’ (peroxide) is pronounced as /E/, but70

〈e〉 in a derivative word ’perokok ’ (smoker) is converted into /@/ because ’pe’

is a prefix for the basic word ’rokok ’ (cigarette) that is always pronounced as

/p@/; the grapheme 〈e〉 in a basic word ’pering ’ (tuberculosis) is pronounced as

/E/, but 〈e〉 in a derivative word ’teringat ’ (remembered) is converted into /@/

because ’ter’ is a prefix for the basic word ’ingat ’ (remember) that is pronounced75

as /t@r/. Those cases of grapheme sequences are challenging to be solved using

both conventional ML and DL.

Moreover, affixes in Indonesian create many long words. A preliminary study

on the dataset of 50 k words, which are collected from the Great Dictionary of

the Indonesian Language or Kamus Besar Bahasa Indonesia (KBBI), the third80

edition, developed by the Language Center or Pusat Bahasa, shows that the

Indonesian has 8.02 characters per word on average. The dataset contains up to

401 k characters, including a dash symbol, where 385 k of them are graphemes

(26 alphabets): 〈a〉 to 〈z〉.

Furthermore, Table 1 illustrates eight (of the twenty six) graphemes and their85

possible phonemes, which are part of a detailed observation in [18], that are most

challenging in case of the Indonesian G2P. Meanwhile, 18 other graphemes are

not listed here since they are easily converted into two possible phonemes using

a simple rule or even into exactly one phoneme. It can be seen in the table that

the grapheme 〈a〉 is the most frequently pronounced as /A/ (up to 54 k) among90

the three other phonemes: /aI/, /aU/, and /A+P/ that are lower than 1 k.

However, the grapheme 〈a〉 that is followed by a grapheme 〈i〉, which generates

4

a grapheme sequence 〈ai〉, is not always converted into a diphthong-phoneme

/aI/, but it can also be pronounced as either /a/ or /A+P/, with no certain rule.

For instances, ’baik ’ (good), ’abai ’ (ignore), and ’bait’ (verse) are pronounced as95

/bAik/, /AbaI/, and /bA+Pit/, respectively. Fortunately, there is a phonotactic

constraint that the grapheme sequence 〈ai〉 is not possible to be pronounced as

a phoneme /aU/. Those facts show that the grapheme 〈a〉 is quite challenging

to be converted into the correct phoneme.

Meanwhile, a grapheme 〈e〉 is possibly converted into one of the five different100

phonemes: /E/, /@/, /eI/, /E+P/, and /@+P/. It can be more challenging to

convert a grapheme 〈e〉 into phoneme /E/ or /@/ since they dynamically change

with no particular rule, and their frequencies are so high: up to 10.49% (2.56%

and 7.93% each). They come from the ambiguities of the roots and the derivative

words containing the four prefixes: 〈ber〉, 〈meng〉, 〈peng〉, and 〈ter〉. Hence, in105

[18], the conversion of grapheme 〈e〉 into /E/ and /@/ is reported to contribute

many errors.

Next, the grapheme 〈g〉 can be arbitrarily converted into either /g/ or /*/

with no definite rule. The grapheme 〈i〉 can also be converted at random into

either /i/ or /*/ when it is preceded by one of the three graphemes: 〈a〉, 〈e〉,110

and 〈o〉 with no particular rule. Furthermore, four other graphemes: 〈k〉, 〈n〉,

〈o〉, and 〈u〉, also give some challenges regarding the phonotactic constraints.

In this research, a new ML-based Indonesian G2P model called n-gram tag-

ger combined with a stemmer, phonotactic rules, and the syllabification points

(NGTSP) is proposed to solve such problems. One of the state-of-the-art G2P115

models, which uses a Transformer 4 × 4 described in [13], is also investigated to

confirm the NGTSP performance.

2. Research Method

The proposed NGTSP model is shown in Fig. 1. The syllabification point

is incorporated into the input grapheme sequence because it can lower the PER120

and solves ambiguous conversions of derivative words [19]. The data set con-

5

Table 1: Eight Indonesian graphemes and their possible pronunciations in the International

Phonemic Alphabet (IPA), frequencies, as well as percentages in 50 k words, where the symbol

* is a blank (no phoneme), which are adapted from [18]

Grapheme IPA Frequency Percentage

a A 54,859 14.23%

a aI 979 0.25%

a aU 624 0.16%

a A+P 669 0.17%

e E 9,851 2.56%

e @ 30,554 7.93%

e eI 29 0.01%

e E+P 36 0.01%

e @+P 193 0.05%

g g 6,492 1.68%

g * 11,513 2.99%

i i 26,685 6.92%

i * 1,047 0.27%

i i+P 30 0.01%

k k 21,784 5.65%

k x 217 0.06%

k * 19 0.00%

n n 22,143 5.74%

n N 11,779 3.06%

n ñ 3,741 0.97%

o O 13,763 3.57%

o OI 56 0.01%

o O+P 60 0.02%

u u 17,926 4.65%

u * 623 0.16%

u u+P 19 0.00%

6

sisting of 50 k syllabified Indonesian words used in this research is the same

as in [19], which is representative enough since those words are collected from

the KBBI. The n-gram tagger is adapted from the one used in Indonesian syl-

labification [20] with few modifications. First, the syllabification points are125

recognized as a character and included in the tag encoding. Then, the state-

elimination procedure is adapted to enforce the fifteen phonetic-rules listed in

Table 2, which are adapted from [18]. Lastly, emission probability is used in

conditional probability calculation because there are phonemes that correspond

to more than one grapheme, such as the phoneme /f/ that can be represented130

by either the grapheme 〈f〉 or 〈v〉.

Figure 1: Phonemicization process of the proposed n-gram tagger-based G2P for a root ”ca.ir”

(liquid) and a derivative ”men.ca.ir.kan” (to melt)

7

2.1. Stemming

Stemming is carried out using a confix-stripping approach called CS Stemmer

[21]. The stemmer can separate the root from derivative words that contain a

certain combination of prefix and suffix. For example, the word ”perjalananku”135

(my journey) come from the root ”jalan” (road) with prefix 〈per〉 and two

suffixes, 〈an〉 and 〈ku〉. However, as the input consists of a syllabified grapheme

sequence, the stemmer is modified to consider the syllabification points.

Certain affixes might be syllabified differently based on the root word. For

example, the word ”mengambil” (to take) from the root ”ambil” (take) is syl-140

labified as 〈me.ngam.bil〉, where the word ”menggapai” (to reach) from the root

”gapai” (reach) is syllabified as 〈meng.ga.pai〉. The prefix 〈meng〉 can be syllab-

ified either as 〈me.ng〉 or 〈meng.〉. The stemmer needs to consider all possible

syllabification for all affixes.

2.2. Tag encoding145

Each grapheme from the input can have one or more corresponding phoneme

tags. For example, the grapheme sequence 〈a〉 has four possible phonemes: /A/,

/aI/, /aU/, and /A+P/, thus can be encoded to four different tags. Based on all

possible phonemes from each grapheme in the input, states containing phoneme

tag sequence with length k are generated, where k is n−1 and n is the order size150

of the n-gram. As illustrated in Fig. 2, the phoneme tag sequence in each state

is a subset from one of all possible phoneme tag sequence combination from the

input word. Also note that since the input is a syllabified grapheme sequence,

the syllabification point is also encoded into its own tag.

For affixes obtained at the stemming step, the grapheme to phoneme encod-155

ing is one-to-one for each grapheme. For example, the phoneme sequence of the

prefix 〈meng〉 is always 〈m@N*〉 regardless of the word. Therefore, even though

the grapheme 〈e〉 can originally be encoded to five different phonemes, it will

only be encoded to a single phoneme /@/.

8

Figure 2: Tag encoding for each grapheme from the input word ”ca.ir” (melt)

2.3. Phonetic rule-based state elimination160

Applying phonemic rule in Indonesian phonemicization can reduce the PER

significantly, as shown in [18]. The same phonemic rule, listed in Table 2, is used

by utilizing the state-elimination as described in [20]. The state-elimination is

modified to recognize impossible phonemes (IP). For each possible phoneme of

a given grapheme from the input, the phoneme is decided to be IP or not based165

on the previous grapheme and the next grapheme. A tag will be discarded if it

contains one or more IP. For example, the state 〈aU, .〉 in Fig. 2 contains the

phoneme /aU/. Based on the second phonemic rule, the phoneme /aU/ is an IP

because the next grapheme of the corresponding grapheme 〈a〉 is 〈i〉, not 〈u〉.

2.4. n-gram tagger170

To generate the optimum phoneme sequence from the input, the tagger finds

the most likely phoneme tag sequence using conditional probability and Viterbi

algorithm as described in [20]. For a grapheme sequence gn
1 = g1, g2, ∙ ∙ ∙ , gn,

the tagger will find the optimum phoneme tag sequence tn1 = t1, t2, ∙ ∙ ∙ , tn that

maximizes the conditional probability of P (tn1 |g
n
1), which is formulated as175

arg max
tn
1

P (tn1 |g
n
1) = arg max

tn
1

P (tn1)P (gn
1 |t

n
1). (1)

P (tn1) is a probability of phoneme tag sequence tn1 , where each tag ti de-

pends on the k previous tags by using Markov assumption. It means, k is the

9

Table 2: Fifteen phonemic rules, which are adapted from [18] to reduce the potential phonemes,

where G is the grapheme, P is the phoneme list, L1 and R1 is the first contextual grapheme

on the left and right, respectively

Number Rule

1 if G = 〈a〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/aI/}

2 if G = 〈a〉 and R1 /∈ {〈u〉,〈w〉} then P /∈ {/aU/}

3 if G = 〈e〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/eI/}

4 if G = 〈e〉 and R1 /∈ {〈a〉,〈e〉,〈i〉,〈o〉,〈u〉} then P /∈ {/E+P/,/E+P/}

5 if G = 〈g〉 and L1 /∈ {〈n〉} then P /∈ {/*/}

6 if G = 〈i〉 and L1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/*/}

7 if G = 〈i〉 and R1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/i+P/}

8 if G = 〈k〉 and R1 /∈ {〈h〉} then P /∈ {/x/}

9 if G = 〈n〉 and R1 /∈ {〈c〉,〈j〉,〈s〉 〈y〉 then P /∈ {/ñ/}

10 if G = 〈n〉 and R1 /∈ {〈g〉,〈k〉} then P /∈ {/N/}

11 if G = 〈o〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/OI/}

12 if G = 〈s〉 and R1 /∈ {〈y〉} then P /∈ {/S/}

13 if G = 〈u〉 and L1 /∈ {〈a〉} then P /∈ {/*/}

14 if G = 〈u〉 and R1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/u+P/}

15 if G = 〈y〉 and L1 /∈ {〈n〉,〈s〉} then P /∈ {/*/}

contextual size. Thus, P (tn1) can be formulated as

P (tn1) =
n∏

i=1

P (ti|ti−k, ∙ ∙ ∙ , ti−1). (2)

For each phoneme tag ti, the probability of emitting a grapheme gi is the

emission probability P (gi|ti). So P (gn
1 |t

n
1) can be formulated as180

P (gn
1 |t

n
1) =

n∏

i=1

P (gi|ti). (3)

By putting together Eq. (2) and Eq. (3) into Eq. (1), the final formula to

find the most likely phoneme tag sequence tn1 of the grapheme sequence gn
1 is as

10

follows

arg max
tn
1

P (tn1 |g
n
1) = arg max

tn
1

n∏

i=1

(P (ti|ti−k, ∙ ∙ ∙ , ti−1)P (gi|ti)). (4)

As explained in [20], Generalized Modified Kneser-Ney (GKN) [22] is used

as the smoothing technique to calculate P (ti|ti−k, ∙ ∙ ∙ , ti−1) in Eq (4). GKN185

has discount bound parameter B, which functions to determine the number of

discount parameters for smoothing process.

Finally, the Viterbi algorithm is exploited to optimize the phoneme tag se-

quence, as illustrated in Fig. 3. Each grapheme from the input represents a

single time-state. Each time-state has a corresponding set of states from the190

encoding that represents the present grapheme and k previous grapheme. Given

a particular state Si, the transition to another state Sj is the transition prob-

ability Aij which is the conditional probability of P (tjk
1 |ti

k
1). Each state also

has emission probabilities of P (gn
1 |t

n
1) that represent the probabilities of mak-

ing certain observations of a grapheme at that state. The Viterbi algorithm195

yields the optimum path that has a phoneme tag sequence with the maximum

probability.

Figure 3: Visualisation for the Viterbi algorithm with the input word ”ca.ir” (melt)

11

3. Results and Discussion

Based on 5-fold cross-validation, the four n-gram tagger-based G2P models

are evaluated using 50 k Indonesian words. First, the n-gram tagger is evaluated200

without stemmer and phonotactic rules. Then, the addition of stemmer and

phonotactic rules to the n-gram tagger are separately evaluated. Finally, the

n-gram tagger is evaluated with both stemmer and phonotactic rules.

Some experiments are performed to optimize the parameters of the four mod-

els. The optimum models are then compared to the state-of-the-art Transformer-205

based G2P model using both PER and WER. Next, some detailed investigations

are carried out to see the factors that contribute to the WER. Finally, the pro-

cessing time is also carefully investigated.

3.1. Optimization of the parameters

As described in [20], the n-gram tagger needs two parameters to be tuned,210

the n-gram order n and discount bound B. As illustrated in Fig 4, the optimum

n values for the n-gram tagger (NGT), n-gram tagger with stemmer (NGTS), n-

gram tagger with phonotactic rules (NGTP), and n-gram tagger with stemmer

and phonotactic rules (NGTSP) are all n = 7. Fig 5 shows that the optimum

B values for NGT, NGTS, and NGTP are 19, while for NGTSP is 18. The215

B values are limited to 19 in these models. According to the GKN discount

formula described in [22], for B = i the n-gram model needs to have at least

one unique gram item with a frequency of 1 to i. Since for n = 7 there is no gram

item in the model that has a frequency of 20, B = 20 gives a computational

error of division by zero in the discount value calculation.220

3.2. Comparison of the models

The PERs produced by all G2P models using those optimum parameters,

and the comparison with the Transformer-based G2P model, are illustrated in

Figure 6. NGT produces an average PER of 1.21% with a low standard deviation

(STD) of 0.02%. The stemmer in NGTS reduces the PER by 10.06%, giving225

an average PER of 1.09% with an STD of 0.03%. Incorporating phonotactic

12

Figure 4: Average PER for NGT, NGTS, NGTP, and NGTSP with B = 3 for varying n

Figure 5: Average PER for NGT, NGTS, NGTP, and NGTSP with n = 7 for varying B

rules in NGTP decreases the average PER to be 0.79% with STD of 0.02%.

Combining stemmer and phonotactic rules in NGTSP significantly gives relative

reduction by up to 35.93%, which reaches the lowest average PER of 0.78% with

STD of 0.02%. Finally, the Transformer-based G2P model produces a worse230

13

performance, where the mean PER is much higher (up to 1.14%) and unstable

(with a bigger STD of 0.20%).

Meanwhile, the WER for all G2P models, and the comparison with the

Transformer-based G2P model, are illustrated in Figure 7. NGT produces an

average WER of 8.77% with a low STD of 0.19%. The stemmer in NGTS reduces235

the WER by 10.06%, giving an average WER of 7.88% with an STD of 0.22%.

Incorporating phonotactic rules in NGTP reduces the mean WER to be 5.74%

with an STD of 0.20%. Combining stemmer and phonotactic rules in NGTSP

significantly gives relative decrement by up to 35.70%, which obtains the lowest

mean WER of 5.64% with an STD of 0.22%. Finally, the Transformer-based240

G2P model shows a worse performance, where the average WER is much higher

(up to 8.20%) and unstable (with a much bigger STD of 1.46%).

Figure 6: PERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indone-

sian G2P models

3.3. Contributions to WER

Furthermore, four detailed investigations are performed regarding the WERs

produced by both NGT and NGTSP to see the impacts of both stemmer and245

phonotactic rules. Based on 5-fold cross-validation datasets, both NGT and

NGTSP produce 897 and 572 word-errors on average that obtain WERs of

8.77% and 5.64%, respectively, as shown in Fig. 7. First, the numbers of

14

Figure 7: WERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indone-

sian G2P models

phoneme errors in a word are evaluated to see their impact on the WERs. The

contributions of three word-categories to the WERs are then investigated. Next,250

the contributions of the grapheme 〈e〉 and the others are investigated. Finally,

the impacts of the four prefixes to the WERs are also investigated.

The first investigation shows that the WERs produced by both NGT and

NGTSP mostly come from the words with one phoneme error (more than 90%)

and the words with two phoneme errors (more than 8%). Meanwhile, a low255

(less than 1%) WER comes from the words with three and four phoneme errors.

However, NGTSP gives slightly higher WER from the words with one phoneme

error, but it obtains slightly lower WERs from the words with two, three, and

four phoneme errors. These results explain why the relative reduction in WER

(35.93%) is slightly smaller than in PER (35.70%).260

The 50 k words in the dataset are categorized as Short, Medium, and Long,

which are defined as less than six characters, between six and ten characters,

and more than ten characters [12], with their percentages are 19.90%, 62.48%,

and 17.62%, respectively. The investigation shows that WERs produced by both

NGT and NGTSP are mostly (62.99% and 63.32%, respectively) come from the265

medium words. The exciting results are given by both short and long words,

15

where NGTSP gives a higher WER (24.02%) than NGT (19.44%) for the short

words, but it reaches much lower WER (12.67%) than NGT (17.57%) for the

long words. The more detailed investigation shows that NGTSP is capable of

solving the word errors caused by the phonotactic constraints as well as the four270

prefixes (contained in long words) produced by NGT.

A large portion of the WER produced by NGT comes from the grapheme

〈e〉 with the corresponding phoneme /E/ or /@/, which contributes up to 90.31%

of the WER. The phoneme /E/ and /@/ can be used interchangeably without

limitation from any phonemic rule. Meanwhile, the other graphemes relating to275

the phonotactic constraints only contribute to 9.69% of the WER. In NGTSP,

the grapheme 〈e〉 contributes up to 96.28% to the WER, but the others only

3.72%. This result shows that the phonotactic rules, which are incorporated as

a state-elimination procedure in NGTSP, can solve many errors regarding the

phonotactic constraints. Besides, the stemmer used in NGTSP also solve some280

errors relating to the grapheme 〈e〉 contained in the four prefixes: 〈ber〉, 〈meng〉,

〈peng〉, and 〈ter〉. These facts prove that the combination of both stemmer

and phonotactic rules, which are the main contribution of this research, can

significantly reduce the WER produced by the baseline NGT model.

A detailed observation is then performed on the WERs that come from both285

phonotactic constraints and prefixes. It shows that only 11.76% (104 of 897

words) of the WER produced by NGT comes from the four prefixes and 88.24%

(793 of 897 words) from the phonotactic constraints in the roots. Meanwhile,

the stemmer and phonotactic rules in NGTSP gives a significant error reduction,

where only 1.51% (9 of 572) of the WER come from the four prefixes and 98.49%290

(563 of 572 words) from the phonotactic constraints in the roots. Based on this

fact, it can be implied that the stemmer is proportionally more effective than

the phonotactic rules in reducing the WER. However, since the error come from

the phonotactic constraints are much more than the prefixes, it can be said that

the phonotactic rules used in NGTSP contribute more WER decrement than295

the stemmer.

16

3.4. Processing time

Both NGT and NGTSP G2P models use the same n-gram model, which takes

about 6 seconds to train 40 k words on average for 7-gram. For comparison, the

Transformer-based G2P model takes up to 72,080 seconds (20 hours) to train and300

37 seconds to test on average. Compared to NGT, the NGTSP can cut-off the

testing time for 10 k words by up to 84%. It happens since both stemming and

phonotactic rules used in NGTSP significantly reduce the number of possible

phoneme combinations. These results prove that NGTSP is the most efficient in

both training and testing processes. Moreover, in the training process, it much305

faster than the Transformer-based G2P model. Besides, it is also much simpler

in terms of implementation and parameter tuning during the training process.

4. Conclusion

The Indonesian G2P model, based on n-gram tagger combined with linguistic

knowledge, is successfully developed. The 5-fold cross-validation using 50 k310

words shows that the stemmer can decrease the average PER by 10.06% (from

1.21% to 1.09%). Meanwhile, the phonotactic rules reduce the average PER

to be 0.79%. Combining both stemmer and phonotactic rules gives relative

decrement by up to 35.93% and 35.70%, which obtains the lowest mean PER

and WER of 0.78% and 5.64% (STD of 0.01% and 0.04%), respectively. This315

result is much lower and more stable than the Transformer-based G2P model,

one of the state-of-the-art deep learning models, which produces the average

PER and WER of 1.14% and 8.20% with STD of 0.20% and 1.46%, respectively.

The detailed investigations prove that both stemmer and phonotactic rules can

reduce word errors caused by the phonotactic rules and the prefixes. They also320

reduce the processing time drastically that makes the proposed NGTSP be the

fastest G2P model.

17

References

[1] E. D. Emiru, Y. Li, S. Xiong, A. Fesseha, Speech recognition system based

on deep neural network acoustic modeling for low resourced language-325

Amharic, in: ACM International Conference Proceeding Series, Association

for Computing Machinery, 2019, pp. 141–145.

[2] S. Achanta, A. Pandey, S. V. Gangashetty, Analysis of sequence to se-

quence neural networks on grapheme to phoneme conversion task, in: 2016

International Joint Conference on Neural Networks (IJCNN), 2016, pp.330

2798–2804. doi:https://doi.org/10.1109/IJCNN.2016.7727552.

[3] I. Hadj Ali, Z. Mnasri, Z. Lachiri, Dnn-based grapheme-to-phoneme con-

version for arabic text-to-speech synthesis, International Journal of Speech

Technology 23 (3) (2020) 569–584. doi:10.1007/s10772-020-09750-7.

[4] A. Stan, Input encoding for sequence-to-sequence learning of romanian335

grapheme-to-phoneme conversion, Institute of Electrical and Electronics

Engineers Inc., 2019. doi:10.1109/SPED.2019.8906639.

[5] S. Suyanto, S. Hartati, A. Harjoko, D. V. Compernolle, Indonesian syllabi-

fication using a pseudo nearest neighbour rule and phonotactic knowledge,

Speech Communication 85 (2016) 109–118. doi:http://dx.doi.org/10.340

1016/j.specom.2016.10.009.

[6] J. Švec, J. V. Psutka, J. Trmal, L. Smfdl, P. Ircing, J. Sedmidubsky, On

the Use of Grapheme Models for Searching in Large Spoken Archives, in:

2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2018, pp. 6259–6263. doi:https://doi.org/10.1109/345

ICASSP.2018.8461774.

[7] T. Patil, D. Magdum, M. Suman, Grapheme to phoneme conversion rules

for hindi, Journal of Advanced Research in Dynamical and Control Systems

11 (5 Special Issue) (2019) 1757–1761.

18

http://dx.doi.org/https://doi.org/10.1109/ICASSP.2018.8461774
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2018.8461774
http://dx.doi.org/http://dx.doi.org/10.1016/j.specom.2016.10.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.specom.2016.10.009
http://dx.doi.org/10.1109/SPED.2019.8906639
http://dx.doi.org/10.1007/s10772-020-09750-7
http://dx.doi.org/https://doi.org/10.1109/IJCNN.2016.7727552

[8] B. Al-Daradkah, B. Al-Diri, Automatic grapheme-to-phoneme conversion350

of Arabic text, in: 2015 Science and Information Conference (SAI), 2015,

pp. 468–473. doi:https://doi.org/10.1109/SAI.2015.7237184.

[9] A. Rugchatjaroen, S. Saychum, S. Kongyoung, P. Chootrakool, S. Kasuriya,

C. Wutiwiwatchai, Efficient two-stage processing for joint sequence model-

based thai grapheme-to-phoneme conversion, Speech Communication 106355

(2019) 105–111, cited By 3. doi:10.1016/j.specom.2018.12.003.

[10] A. Hlaing, W. Pa, Sequence-to-sequence models for grapheme to phoneme

conversion on large myanmar pronunciation dictionary, Institute of Electri-

cal and Electronics Engineers Inc., 2019. doi:10.1109/O-COCOSDA46868.

2019.9041225.360

[11] H. Chen, English phonetic synthesis based on dfga g2p conversion algo-

rithm, Vol. 1533, Institute of Physics Publishing, 2020. doi:10.1088/

1742-6596/1533/3/032031.

[12] S. Yolchuyeva, G. Nmeth, B. Gyires-Tth, Grapheme-to-phoneme conver-

sion with convolutional neural networks, Applied Sciences (Switzerland)365

9 (6), cited By 1. doi:10.3390/app9061143.

[13] S. Yolchuyeva, G. Nmeth, B. Gyires-Tth, Transformer based grapheme-to-

phoneme conversion, Vol. 2019-September, International Speech Commu-

nication Association, 2019, pp. 2095–2099. doi:10.21437/Interspeech.

2019-1954.370

[14] L. Liu, A. Finch, M. Utiyama, E. Sumita, Agreement on target-

bidirectional recurrent neural networks for sequence-to-sequence learn-

ing, Journal of Artificial Intelligence Research 67 (2020) 581–606. doi:

10.1613/JAIR.1.12008.

[15] P. Jyothi, M. Hasegawa-Johnson, Low-Resource Grapheme-to-Phoneme375

Conversion Using Recurrent Neural Networks, in: IEEE International

19

http://dx.doi.org/10.1613/JAIR.1.12008
http://dx.doi.org/10.1613/JAIR.1.12008
http://dx.doi.org/10.21437/Interspeech.2019-1954
http://dx.doi.org/10.21437/Interspeech.2019-1954
http://dx.doi.org/10.3390/app9061143
http://dx.doi.org/10.1088/1742-6596/1533/3/032031
http://dx.doi.org/10.1088/1742-6596/1533/3/032031
http://dx.doi.org/10.1109/O-COCOSDA46868.2019.9041225
http://dx.doi.org/10.1109/O-COCOSDA46868.2019.9041225
http://dx.doi.org/10.1016/j.specom.2018.12.003
http://dx.doi.org/https://doi.org/10.1109/SAI.2015.7237184

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

doi:https://doi.org/10.1109/ICASSP.2017.7953114.

[16] B. Peters, Massively Multilingual Neural Grapheme-to-Phoneme Conver-

sion, in: the First Workshop on Building Linguistically Generalizable380

NLP Systems, 2017, pp. 19–26. doi:http://dx.doi.org/10.18653/v1/

W17-5403.

[17] V. Sar, T.-P. Tan, Applying linguistic g2p knowledge on a statistical

grapheme-to-phoneme conversion in khmer, Vol. 161, Elsevier B.V., 2019,

pp. 415–423. doi:10.1016/j.procs.2019.11.140.385

[18] Suyanto, S. Hartati, A. Harjoko, Modified Grapheme Encoding and Phone-

mic Rule to Improve PNNR-Based Indonesian G2P, International Jour-

nal of Advanced Computer Science and Applications 7 (3). doi:https:

//dx.doi.org/10.14569/IJACSA.2016.070358.

[19] S. Suyanto, Incorporating syllabification points into a model of grapheme-390

to-phoneme conversion, International Journal of Speech Technology 22 (2)

(2019) 459–470. doi:https://doi.org/10.1007/s10772-019-09619-4.

[20] R. N. Ismail, S. Suyanto, Indonesian Graphemic Syllabification Using n

-Gram Tagger with State-Elimination, in: 2020 8th International Con-

ference on Information and Communication Technology (ICoICT), 2020.395

doi:https://doi.org/10.1109/ICoICT49345.2020.9166368.

[21] M. Adriani, J. Asian, B. Nazief, S. M. Tahaghoghi, H. E. Williams, Stem-

ming Indonesia: A Confix-Stripping Approach, ACM Transactions on

Asian Language Information Processing 6 (4) (2007) 1–33. doi:https:

//doi.org/10.1145/1316457.1316459.400

[22] E. Shareghi, T. Cohn, G. Haffari, Richer Interpolative Smoothing Based on

Modified Kneser-Ney Language Modeling (2016) 944–949doi:10.18653/

v1/d16-1094.

20

http://dx.doi.org/10.18653/v1/d16-1094
http://dx.doi.org/10.18653/v1/d16-1094
http://dx.doi.org/https://doi.org/10.1145/1316457.1316459
http://dx.doi.org/https://doi.org/10.1145/1316457.1316459
http://dx.doi.org/https://doi.org/10.1109/ICoICT49345.2020.9166368
http://dx.doi.org/https://doi.org/10.1007/s10772-019-09619-4
http://dx.doi.org/https://dx.doi.org/10.14569/IJACSA.2016.070358
http://dx.doi.org/https://dx.doi.org/10.14569/IJACSA.2016.070358
http://dx.doi.org/10.1016/j.procs.2019.11.140
http://dx.doi.org/http://dx.doi.org/10.18653/v1/W17-5403
http://dx.doi.org/http://dx.doi.org/10.18653/v1/W17-5403
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2017.7953114

Conflict of Interest Statement

On behalf of the authors, I declare that we have no known competing financial interest or personal
relationships that could have appeared to influence the work reported in the manuscript entitled
“Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization”.

The CRediT author statement is as follow. Suyanto Suyanto: Principal Investigator, Conceptualization,
Methodology, Data curation, Supervision, Writing original draft preparation. Andi Sunyoto:
Conceptualization, Methodology, Reviewing and Editing. Rezza Nafi Ismail: Software, Investigation,
Validation. Ema Rachmawati: Reviewing and Editing. Warih Maharani: Reviewing and Editing

October 20, 2020

Conflict of Interest

Suyanto Suyanto Andi Sunyoto Rezza Nafi Ismail

Ema Rachmawati Warih Maharani

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University – Computer and Information Sciences (JKSUCI) the right to publish and
distribute the manuscript in part or in its entirety. The Author's name will always be
included with the publication of the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University – Computer
and Information Sciences (JKSUCI) as the original place of publication.

The Author hereby grants the Journal of King Saud University – Computer and
Information Sciences (JKSUCI) full and exclusive rights to the manuscript, all
revisions, and the full copyright. The Journal of King Saud University – Computer
and Information Sciences (JKSUCI) rights include but are not limited to the
following: (1) to reproduce, publish, sell, and distribute copies of the manuscript,
selections of the manuscript, and translations and other derivative works based upon
the manuscript, in print, audio-visual, electronic, or by any and all media now or
hereafter known or devised; (2) to license reprints of the manuscript to third persons
for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author: Suyanto Suyanto Date: 20 October 2020

Editor in Chief:- Nasser-Eddine Rikli Date:-

Author Agreement

1. First submission (23 October 2020)

2. LoA with Minor Revision (27 November 2020)

3. Responses to Reviewers, Final submission (19 Dec 2020)

4. LoA with Fully Accepted (09 January 2021)

5. Proof Reading (16 January 2021)

Evidence of correspondence

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Decision on submission to Journal of King Saud University - Computer and
Information Sciences
1 message

Journal of King Saud University - Computer and Information Sciences
<em@editorialmanager.com>

Fri, Nov 27, 2020 at 1:10
PM

Reply-To: Journal of King Saud University - Computer and Information Sciences <jksu-cis@elsevier.com>
To: Suyanto Suyanto <suyanto@telkomuniversity.ac.id>

Manuscript Number: JKSUCIS-D-20-01239  

Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization  

Dear Dr. Suyanto,    

Thank you for submitting your manuscript to Journal of King Saud University - Computer and Information Sciences.

I have completed my evaluation of your manuscript. The reviewers recommend reconsideration of your manuscript
following minor revision and modification. I invite you to resubmit your manuscript after addressing the comments
below. Please resubmit your revised manuscript by Dec 27, 2020.

When revising your manuscript, please consider all issues mentioned in the reviewers' comments carefully: please
outline every change made in response to their comments and provide suitable rebuttals for any comments not
addressed. Please note that your revised submission may need to be re-reviewed.    

To submit your revised manuscript, please log in as an author at https://www.editorialmanager.com/jksucis/, and
navigate to the "Submissions Needing Revision" folder under the Author Main Menu.    

Journal of King Saud University - Computer and Information Sciences values your contribution and I look forward to
receiving your revised manuscript.  

Kind regards,   

Nasser-Eddine Rikli  

Editor-in-Chief  

Journal of King Saud University - Computer and Information Sciences

Editor and Reviewer comments:    

Reviewer #1: The research work carried out in the paper is worthy of investigation. The paper is well structured and
the language is understandable. The writing style of the author has coherence and cohesion. The following few points
need to be addressed before publishing the article in the reputable JKSUCIS.

1) The abstract gives the overall picture of your paper and it should be well written. Explaining briefly the background
of the research. First sentence in the abstract should be elaborated briefly before moving to the second sentence.
Define G2P or phonemicization and name the "various applications of computational linguistics" where it is used.

2) Your paper can be read by a person with no background knowledge in the field. You should be careful about
introducing the major technical terms in the paper (including the abstract.) It is better to briefly define and explain the
use with examples of the technical terms at their first instance of use in the paper. Some of the terms are:

i) Phoneme
ii) Points of Syllabification
iii) Grapheme
iv) Diphthong phoneme
v) syllabification point
vi) PER and WER (Explain how they are calculated as well)
vii) Derivative words (Use examples in English language while explaining the terms)
viii) n-gram tagger
ix) Tag encoding
x) state elimination

https://www.editorialmanager.com/jksucis/

xi) Stemming
xii) Confix-stripping approach
xiii) Impossible Phonemes
xiv) Contextual Size
xv) Smoothing technique
xvi) 5-fold cross validation
xvii) stemmer
xviii) Phonotactic rules

3) Many of the concepts are built on existing methods that have not been explained in the paper, rather references
have been given to the respective methods. The readers should not be left to references in a research paper, instead
the concepts taken from other sources should be briefly described.

4) The most important part of a research is to be able to justify each and every step in the proposed method and why
you chose to use the step in your method. The paper lacks proper justification for the choices made.

5) In my observation, Figures 4 & 5 present not significant differences between existing NGTP and the proposed
NGTSP and the researchers seem reluctant in highlighting this fact. Even if the results of your research work are not
as expected then it is still research that shows the method studied does not work. Therefore, the authors should
highlight this point as well and be able to justify why NGTSP is still better than NGTP. The authors should also
compare the processing time of NGTP with NGTSP.

6) I am dubious of the value of training time equal to 6 seconds for n-gram model.

Reviewer #2: General comments:

Language is not satisfactory. Article may be revised accordingly by correcting the grammatical mistakes in the
paper

Work is good and may be useful for the researchers working in the same area.
Authors may explain the procedures in detail for phoneme recognition and word recognition system
Authors may ensure that whether all the references are properly cited inside the text

More information and support 

FAQ: How do I revise my submission in Editorial Manager?

https://service.elsevier.com/app/answers/detail/a_id/28463/supporthub/publishing/

You will find information relevant for you as an author on Elsevier’s Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/
publishing/
Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more
about Editorial Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and
24/7 by live chat and email

__
In compliance with data protection regulations, you may request that we remove your personal registration details at
any time. (Use the following URL: https://www.editorialmanager.com/jksucis/login.asp?a=r). Please contact the
publication office if you have any questions.

2 attachments

00007_0.pdf
589K

Review report forJKSUCIS-D-20-01239.docx
16K

https://service.elsevier.com/app/answers/detail/a_id/28463/supporthub/publishing/
https://www.elsevier.com/authors
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
https://service.elsevier.com/app/home/supporthub/publishing/
https://www.editorialmanager.com/jksucis/login.asp?a=r
https://mail.google.com/mail/u/0?ui=2&ik=ca1e20d620&view=att&th=1760852e83f857d9&attid=0.1&disp=attd&safe=1&zw
https://mail.google.com/mail/u/0?ui=2&ik=ca1e20d620&view=att&th=1760852e83f857d9&attid=0.2&disp=attd&safe=1&zw

1. First submission (23 October 2020)

2. LoA with Minor Revision (27 November 2020)

3. Responses to Reviewers, Final submission (19 Dec 2020)

4. LoA with Fully Accepted (09 January 2021)

5. Proof Reading (16 January 2021)

Evidence of correspondence

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Confirming submission to Journal of King Saud University - Computer and Information
Sciences
Journal of King Saud University - Computer and Information Sciences <em@editorialmanager.com> Sat, Dec 19, 2020 at 2:10 PM
Reply-To: Journal of King Saud University - Computer and Information Sciences <jksu-cis@elsevier.com>
To: Suyanto Suyanto <suyanto@telkomuniversity.ac.id>

This is an automated message.

Manuscript Number: JKSUCIS-D-20-01239R1

Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization

Dear Dr. Suyanto,

We have received the above referenced manuscript you submitted to Journal of King Saud University - Computer and Information
Sciences.

To track the status of your manuscript, please log in as an author at https://www.editorialmanager.com/jksucis/, and navigate to the
"Revisions Being Processed" folder.

Thank you for submitting your revision to this journal.

Kind regards,
Journal of King Saud University - Computer and Information Sciences

More information and support

You will find information relevant for you as an author on Elsevier’s Author Hub: https://www.elsevier.com/authors

FAQ: How can I reset a forgotten password?
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
For further assistance, please visit our customer service site: https://service.elsevier.com/app/home/supporthub/publishing/
Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about Editorial
Manager via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email

__
In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Use
the following URL: https://www.editorialmanager.com/jksucis/login.asp?a=r). Please contact the publication office if you have any
questions.

https://www.editorialmanager.com/jksucis/
https://www.elsevier.com/authors
https://service.elsevier.com/app/answers/detail/a_id/28452/supporthub/publishing/
https://service.elsevier.com/app/home/supporthub/publishing/
https://www.editorialmanager.com/jksucis/login.asp?a=r

Journal of King Saud University - Computer and Information Sciences

Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian
Phonemicization
--Manuscript Draft--

Manuscript Number: JKSUCIS-D-20-01239R1

Article Type: Full Length Article

Keywords: grapheme-to-phoneme conversion; Indonesian language; n-gram tagger; phonotactic
rules; stemmer

Corresponding Author: Suyanto Suyanto
Telkom University
INDONESIA

First Author: Suyanto Suyanto

Order of Authors: Suyanto Suyanto

Andi Sunyoto

Rezza Nafi Ismail

Ema Rachmawati

Warih Maharani

Abstract: A phonemicization is a process of converting a word into its pronunciation. It is one of
the essential components in speech synthesis, speech recognition, and natural
language processing. The deep learning (DL)-based state-of-the-art G2P model
generally gives low phoneme error rate (PER) as well as word error rate (WER) for
high-resource languages, such as English and European, but not for low-resource
languages. Therefore, some conventional machine learning (ML)-based G2P models
incorporated with specific linguistic knowledge are preferable for low-resource
languages. However, these models are poor for several low-resource languages
because of various issues. For instance, an Indonesian G2P model works well for roots
but gives a high PER for derivatives. Most errors come from the ambiguities of some
roots and derivative words containing four prefixes: <ber>, <meng>, <peng>, and
<ter>. In this research, an Indonesian G2P model based on n-gram combined with
stemmer and phonotactic rules (NGTSP) is proposed to solve those problems. An
investigation based on 5-fold cross-validation, using 50 k Indonesian words, informs
that the proposed NGTSP gives a much lower PER of 0.78% than the state-of-the-art
Transformer-based G2P model (1.14%). Besides, it also provides a much faster
processing time.

Suggested Reviewers:

Response to Reviewers: Dear Reviewers,

Thank you very much for your comments and suggestions that helped us to prepare a
hopefully better version of our manuscript. We provide our responses and corrections
to the comments and suggestions in a pdf file attached, where the blue texts are our
responses, the purple ones are the original text in the manuscript, the red strikethrough
ones are the text “to be deleted”, and the green ones are the text “to be inserted”.
Those responses are yellow highlighted in the revised manuscript.

Sincerely,
Suyanto Suyanto

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

December 19, 2020

Dear Professor Nasser-Eddine Rikli,

I wish to submit the revised full manuscript entitled “Stemmer and Phonotactic Rules to
Improve n-Gram Tagger-Based Indonesian Phonemicization” for consideration by the Journal
of King Saud University - Computer and Information Sciences.

In this revised manuscript, all comments and suggestions given by the reviewers are carefully
addressed (yellow highlight). However, due to many additional explanations, the revised
manuscript is now 23 (more than 20) pages. Furthermore, this revised manuscript has been
checked using both Grammarly Premium and iThenticate with a low similarity index of 17%,
without exclude any source.

Thank you for your consideration of this manuscript. Please address all correspondence
concerning this manuscript to me at suyanto@telkomuniversity.ac.id.

Sincerely,

Suyanto
Telkom University
Jl. Telekomunikasi Terusan Buah Batu Bandung 40257, Indonesia

Cover Letter

mailto:suyanto@telkomuniversity.ac.id

Authors' Responses to Reviewers' Comments

Dear Reviewers,

Thank you very much for your comments and suggestions that helped us to prepare a hopefully
better version of our manuscript. Below are our responses and corrections to the comments and
suggestions, where the blue texts are our responses, the purple ones are the original text in the
manuscript, the red strikethrough ones are the text “to be deleted”, and the green ones are the
text “to be inserted”.

Reviewer #1: The research work carried out in the paper is worthy of investigation. The paper
is well structured and the language is understandable. The writing style of the author has
coherence and cohesion. The following few points need to be addressed before publishing the
article in the reputable JKSUCIS.

1) The abstract gives the overall picture of your paper and it should be well written. Explaining
briefly the background of the research. First sentence in the abstract should be elaborated briefly
before moving to the second sentence. Define G2P or phonemicization and name the "various
applications of computational linguistics" where it is used.

>> The first sentence in the abstract is now elaborated as follows:

A phonemicization or grapheme-to-phoneme conversion (G2P) model plays an important role
in various applications of computational linguistics is the process of converting a word
(sequence of graphemes) into its pronunciation (sequence of phonemes). It is one of the
essential components in speech recognition, speech synthesis, natural language processing, and
many other applications in the speech and computational linguistics areas.

2) Your paper can be read by a person with no background knowledge in the field. You should
be careful about introducing the major technical terms in the paper (including the abstract.) It
is better to briefly define and explain the use with examples of the technical terms at their first
instance of use in the paper. Some of the terms are:

i) Phoneme
ii) Points of Syllabification
iii) Grapheme
iv) Diphthong phoneme
v) Syllabification point
vi) PER and WER (Explain how they are calculated as well)
vii) Derivative words (Use examples in English language while explaining the terms)
viii) n-gram tagger
ix) Tag encoding
x) state elimination
xi) Stemming
xii) Confix-stripping approach
xiii) Impossible Phonemes
xiv) Contextual Size
xv) Smoothing technique
xvi) 5-fold cross validation

Response to Reviewers (without Author Details)

xvii) Stemmer
xviii) Phonotactic rules

>> All the terms are now briefly defined and explained the use with examples in the revised
manuscript, which are listed below:

i) Phoneme
The explanation is now added at row 5 in the revised manuscript:
Meanwhile, a phoneme is the smallest unit of speech differentiating one word from
another. For instance, the phoneme /b/ in a word 'cab' distinguishes that word from
'can', 'cap', and 'cat'.

ii) Points of Syllabifications
The explanation is now added at row 73 in the revised manuscript:
Combining points of syllabifications (the boundaries between syllables, such as a
word ‘con.clu.sion’ has two points of syllabification that split the word into three
syllables: ‘con’, ‘clu’, and ‘sion’) into the model relatively reduces the PER to be
0.83\% [19[.

iii) Grapheme
The explanation is now added at row 4 in the revised manuscript:
A grapheme is a unit (such as a letter or digraph) of a writing system.

iv) Diphthong-phoneme
The explanation is now added at row 108 in the revised manuscript:
However, there are some issues regarding to a diphthong, which is a gliding vowel
in the articulation of which there is a continuous transition from one position to
another, such as the vowels contained in both words 'ice' and 'out' that are
represented as diphthongs /ai/ and /au/, respectively.

v) Syllabification point is the same as described in (ii) above.

vi) PER and WER (Explain how they are calculated as well)
The explanations are now added at row 23 in the revised manuscript:
In this paper, PER is the error rate at the phoneme level, which is calculated as the
number of phoneme errors divided by the total number of phonemes that appeared
in the testing set. Meanwhile, WER is the error rate at the word level, which is
computed as the number of word errors divided by the total number of words that
appeared in the testing set.

vii) Derivative words
The explanation is now added at row 125 in the revised manuscript:
They come from the ambiguities of the roots and the derivative words (the words
formed from other words or roots, such as ‘conclusion’ that is derived from a root
‘conclude’) containing the four prefixes: …

viii) n-gram tagger
The explanation is now added at row 145 in the revised manuscript:
The n-gram tagger, which is a tagger that implements a hidden Markov model
(HMM) that tags an item based on the maximized conditional probability depending
on the fixed context size of previous tags occurrence (in this research, the tagger is
tagging graphemes into phoneme tags), is adapted from the one used in ...

ix) Tag encoding
The explanation is now added at row 156 in the revised manuscript:
First, the syllabification points are recognized as a character and included in the tag
encoding, which is the tagger state generation that converts grapheme to phoneme
tag. In this case, the tag is the corresponding phoneme of the grapheme. The tags
are put in sequences with the order based on their respective appearance in the
training data. The tag sequence is analogous to a state in the Viterbi algorithm used
in the tagging process.

x) State elimination
The explanation is now added at row 161 in the revised manuscript:
Then, the state-elimination procedure, a process of removing state that contains one
or more tag that violate an established rule, is adapted to enforce the fifteen
phonotactic-rules listed in Table 2, which are adapted from [18]. In this case, the
rule is based on whether the corresponding phoneme in the tag is an impossible
phoneme (IP) or not.

xi) Stemming
The explanation is now added at row 170 in the revised manuscript:
Stemming is the process of reducing an inflected or derived word to its root (base
or stem) form, such as the derived word ‘fishing’ is reduced to its root ‘fish’. In this
research, the stemming is carried out using …

xii) Confix-stripping approach
The explanation is now added at row 173 in the revised manuscript:
In this research, the stemming is carried out using a confix-stripping approach called
CS Stemmer, which is a process of removing a confix (a combination of prefix and
suffix in a word) based on the order of appearance using a root word dictionary [21].
The This stemmer (stemming model) can separate the root from …

xiii) The explanation is now added at row 207 in the revised manuscript:
The state-elimination is modified to recognize impossible phonemes (IP), which are
the phonemes that cannot be the pronunciation of the given grapheme due to the
phonotactic rules in a language.

xiv) Contextual Size
The explanation is now added at row 225 in the revised manuscript:
It means k is the contextual size (the number of tags taken into account in the
probability calculation).

xv) Smoothing technique
The explanation is now added at row 233 in the revised manuscript:
Smoothing technique is a method that computes the probability more accurately to
deal with data sparsity in the training set.
As explained in [20], A Generalized Modified Kneser-Ney (GKN) [22] is used as
the smoothing technique (a method that computes the probability more accurately
to deal with data sparsity in the dataset) to calculate …

xvi) The explanation is now added at row 250 in the revised manuscript:
5-fold cross-validation is a resampling procedure to create five new datasets
commonly used to evaluate machine learning models on a limited dataset to prevent
an accidental result.

Based on 5-fold cross-validation, the four n-gram tagger-based G2P models are
evaluated using 50 k Indonesian words. All the developed G2P models are evaluated
using 50 k Indonesian words based on 5-fold cross-validation, which is a resampling
procedure to create five new datasets commonly used to evaluate machine learning
models on a limited dataset to prevent an accidental result. The original dataset of
50 k words is divided randomly into five subsets or folds (each contains 10 k unique
words). Hence, five new datasets are created. The first new dataset consists of Fold
1 to 4 for training a model and Fold 5 for testing the trained-model; the second one
contains Fold 1, 2, 3, and 5 for training and Fold 4 for testing, and so on until the
fifth dataset. First, The n-gram tagger is firstly evaluated without stemmer and
phonotactic rules.

xvii) Stemmer
The explanation is now added at row 261 in the revised manuscript:
Finally, the n-gram tagger is evaluated with both stemmer (stemming model) and
…

xviii) Phonotactic rules
The explanation is now added at row 261 in the revised manuscript:
Finally, the n-gram tagger is evaluated with both stemmer (stemming model) and
phonotactic rules (knowledge that define what sound sequences are possible and
what other sound sequences are not possible in a language).

3) Many of the concepts are built on existing methods that have not been explained in the
paper, rather references have been given to the respective methods. The readers should not be
left to references in a research paper, instead the concepts taken from other sources should be
briefly described.

>> All the concepts are now briefly described in the Point (7) below.

4) The most important part of a research is to be able to justify each and every step in the
proposed method and why you chose to use the step in your method. The paper lacks proper
justification for the choices made.

>> All proper justifications for each method (chosen in this paper) are now provided in the
Point (7) below.

5) In my observation, Figures 4 & 5 present not significant differences between existing NGTP
and the proposed NGTSP and the researchers seem reluctant in highlighting this fact. Even if
the results of your research work are not as expected then it is still research that shows the
method studied does not work. Therefore, the authors should highlight this point as well and be
able to justify why NGTSP is still better than NGTP. The authors should also compare the
processing time of NGTP with NGTSP.

>> The comparison between NGTP with NGTSP in both terms of error rate and processing
time are provided in the point (7.k) and (7.l) below.

6) I am dubious of the value of training time equal to 6 seconds for n-gram model.

>> A detailed explanation for the training time equal to 6 seconds for n-gram model is now
given and an additional Table 3 is also provided in the point (7.l) below.

7) Regarding to the comments given by the reviewer in the original manuscript, we give the
responses as follow (the “Row” is in the revised manuscript), where the red strikethrough texts
are “to be deleted” and the green ones are “to be inserted”:

a. Row 11-12: A G2P is generally can be developed using a rule-based approach, a
conventional ML-based approach, and or a DL-based approach.

b. Row 12-18: The performances of those approaches are commonly based on the
complexity of the phonotactic rules of a language, which represents how strong the
relation between graphemes and phonemes. The rule-based G2P models generally give
high performances for some simple languages with limited simple that have low
phonotactic rules with few exceptions so that the graphemes are strongly related to the
phonemes (such as Hindi and Arabic), but it produces low accuracy for the complex
ones.

c. Row 47-49: Furthermore, it gives more phoneme errors in the first half of the words a
word than in the second half. The errors in the first half of a word can decrease the
accuracy in the next half. The correct phoneme in the first half of a word does not
increase the accuracy in the second one [12].

d. Row 51: Another model based on Transformer 4×4 achieves similar PER and WER of
5.23% and 22.1% for the CMUDict dataset [13].

e. Row 145: The n-gram tagger, which is a tagger that implements hidden Markov model
(HMM) that tags an item based on the maximized conditional probability depending on
the fixed context size of previous tags occurrence (in this research, the tagger is tagging
graphemes into phoneme tags), is adapted from the one used in Indonesian
syllabification [20] with few modifications for two reasons: 1) it gives a low error rate
with an efficient process, and 2) it works in a similar way to the G2P task. In a
syllabification task, the n-gram tagger is a binary-class model that just classifies a given
sequence of graphemes into two classes: ‘syllabification point’ and ‘not syllabification
point’. Meanwhile, in a G2P task, it should be a multi-class model since a grapheme can
be converted into three possible phonemes or more. Hence, some modifications are
introduced as follows. First, the syllabification points are recognized as a character and
included in the tag encoding. Then, the state elimination procedure is adapted to enforce
the fifteen phonetic-rules listed in Table 2, which are adapted from [18]. Lastly,
emission probability is used in conditional probability calculation because there are
phonemes that correspond to more than one grapheme, such as the phoneme /f/ that can
be represented by either the grapheme <f> or <v>.

f. Row 198: For affixes obtained at the stemming step, the grapheme to phoneme encoding
is one-to-one for each grapheme because there is only one possible phoneme for each
grapheme contained in the affixes.

g. Row 218-219: To generate the optimum phoneme sequence from the input, the tagger
finds the most likely phoneme tag sequence using conditional probability and the
Viterbi algorithm as described in [20], which is a dynamic programming algorithm that
works efficiently for so many possible sequences of hidden states.

h. Row 238-240: Finally, the Viterbi algorithm is exploited to optimize the phoneme tag
sequence since it is a dynamic programming algorithm, which works efficiently to find
the highest scoring path by reusing a calculated result in the next calculation to save
time, as illustrated in Fig. 3.

i. Row 275-281 (Fig. 5): Why this anomalous behavior at B = 16?
Fig 5 shows that the optimum B values for NGT, NGTS, and NGTP are 19, while for
NGTSP is 18. The PER spikes at B = 16 since the number of unique grams with the
continuation count 16 is unusually low for a lower order 6-gram. The continuation count
for lower-order n-grams is used in probability smoothing calculation. The low unique
grams count at a discount bound (B) makes the discount too small and affects the
probability calculation. This anomaly only happens with Fold 1, 2, and 3 causing their
PER to be quite higher than Fold 4 and 5. The B values …

j. Row 296: Compare NGTP with NGTSP?
Combining stemmer and phonotactic rules in NGTSP gives a relative reduction by up
to 35.93%, which reaches the lowest average PER of 0.78% with STD of 0.02%.
However, this result is not significantly different from that produced by the NGTP. A
detailed investigation finds that the portion of derivative words is just 16% of the testing
set, which can be mostly solved by enforcing the phonotactic rules.

k. Row 335: The investigation shows that WERs produced by both NGT and NGTSP are
mostly (62.99% and 63.32%, respectively) come from the medium words only.

l. Row 367-393: Related to the training process of NGTSP that takes only 6 seconds,
which is commented by the reviewer: “Doubtful. What machine was used for training?
What exactly do you mean by training here?”, we give the detailed explanation in three
additional paragraphs below:

Both training and testing are run on an Intel Core i5-8300H processor and 8 GB of
DDR4 with GPU NVidia Geforce GTX 1050Ti. In the training process, the four G2P
models: NGT, NGTS, NGTP, and NGTSP use the same 7-gram model that takes about
6 seconds to train 40 k words on average, which is much faster than the Transformer-
based G2P model that needs 72,080 seconds (20 hours), as shown in Table 3. The four
n-gram models work linearly in the one-pass process to develop the 7-gram from the
given training set of 40 k words while the Transformer works iteratively for two
thousand epochs. The three models: NGTS, NGTP, and NGTSP, require the same time
as NGT since they do not need any training process to develop the stemmer and/or the
phonotactic rules. Instead, both stemmer and phonotactic rules are implemented using
the predefined dictionary and rules that are manually developed by a linguist (domain
expert).
In the testing process, the four n-gram models need more time than in the training one
since they should find the best phoneme combination using the Viterbi algorithm.
However, they require various average times to test 10 k words. NGT is the slowest one
(128 seconds) since it searches in all phoneme combinations. NGTS is slightly faster
(98 seconds) as the number of phoneme combinations is reduced by stemming some
derivative words. NGTP is the fastest one (16 seconds) as the number of phoneme
combinations are significantly decreased by the phonotactic rules. Meanwhile, NGTSP
requires a little more time (20 seconds) because of the dictionary look-up time by the
stemmer. However, it is much faster than the Transformer (37 seconds).
Hence, the results conclude that the proposed NGTSP is much more efficient than the
Transformer-based G2P in both training and testing processes. During the
implementation and the parameter tuning, it is also much simpler than the Transformer.

Reviewer #2: General comments:

1) Language is not satisfactory. Article may be revised accordingly by correcting the
grammatical mistakes in the paper.

>> All the grammatical mistakes are now carefully corrected and checked using
Grammarly.

2) Work is good and may be useful for the researchers working in the same area.

>> Thank you very much.

3) Authors may explain the procedures in detail for phoneme recognition and word recognition
system.

>> In our paper, there is no procedure of phoneme recognition and word recognition

4) Authors may ensure that whether all the references are properly cited inside the text

>> All the references are now ensured and properly cited.

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

Suyanto Suyantoa,∗, Andi Sunyotob, Rezza Nafi Ismaila, Ema Rachmawatia,
Warih Maharania

aSchool of Computing, Telkom University, Bandung, Indonesia
bFaculty of Computer Science, Universitas Amikom Yogyakarta, Indonesia

∗Corresponding author
Email addresses: suyanto@telkomuniversity.ac.id (Suyanto Suyanto),

andi@amikom.ac.id (Andi Sunyoto), zafitract@student.telkomuniversity.ac.id (Rezza
Nafi Ismail), emarachmawati@telkomuniversity.ac.id (Ema Rachmawati),
wmaharani@telkomuniversity.ac.id (Warih Maharani)

Preprint submitted to Journal of LATEX Templates December 19, 2020

Title Page (with Author Details)

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

Abstract

A phonemicization is a process of converting a word into its pronunciation. It is

one of the essential components in speech synthesis, speech recognition, and nat-

ural language processing. The deep learning (DL)-based state-of-the-art G2P

model generally gives low phoneme error rate (PER) as well as word error rate

(WER) for high-resource languages, such as English and European, but not for

low-resource languages. Therefore, some conventional machine learning (ML)-

based G2P models incorporated with specific linguistic knowledge are preferable

for low-resource languages. However, these models are poor for several low-

resource languages because of various issues. For instance, an Indonesian G2P

model works well for roots but gives a high PER for derivatives. Most errors

come from the ambiguities of some roots and derivative words containing four

prefixes: 〈ber〉, 〈meng〉, 〈peng〉, and 〈ter〉. In this research, an Indonesian G2P

model based on n-gram combined with stemmer and phonotactic rules (NGTSP)

is proposed to solve those problems. An investigation based on 5-fold cross-

validation, using 50 k Indonesian words, informs that the proposed NGTSP

gives a much lower PER of 0.78% than the state-of-the-art Transformer-based

G2P model (1.14%). Besides, it also provides a much faster processing time.

Keywords: grapheme-to-phoneme conversion, Indonesian language, n-gram,

phonotactic rules, stemmer

1. Introduction

A phonemicization, also known as grapheme-to-phoneme conversion (G2P),

is commonly defined as a process of converting a word (sequence of graphemes)

Preprint submitted to Journal of LATEX Templates December 12, 2020

Manuscript (without Author Details) Click here to view linked References

https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=5452&rev=1&fileID=72893&msid=64802357-9682-4275-ba08-c8292b3acc03
https://www.editorialmanager.com/jksucis/viewRCResults.aspx?pdf=1&docID=5452&rev=1&fileID=72893&msid=64802357-9682-4275-ba08-c8292b3acc03

into its pronunciation (sequence of phonemes). A grapheme is a unit (such as

a letter or digraph) of a writing system. Meanwhile, a phoneme is the smallest5

unit of speech differentiating one word from another. For instance, the phoneme

/b/ in a word ’cab’ distinguishes that word from ’can’, ’cap’, and ’cat’. A

phonemicization plays important roles in automatically recognizing speech [1],

synthesizing speech [2, 3], developing phonemic syllabification model [4, 5] and

many other applications in the speech and linguistics areas [6].10

A G2P can be developed using a rule-based approach, a conventional ML-

based approach, or a DL-based approach. The performances of those approaches

are commonly based on the complexity of the phonotactic rules of a language,

which represents how strong the relation between graphemes and phonemes.

The rule-based G2P models generally give high performances for some sim-15

ple languages that have low phonotactic rules with few exceptions so that the

graphemes are strongly related to the phonemes (such as Hindi and Arabic), but

it produces low accuracy for the complex ones. In [7], a Hindi rule-based G2P

was reported to give a low phoneme error rate (PER) and a low word error rate

(WER) of 0.20% and 0.62%, respectively, which is competitive with a decision20

tree (DT)-based conventional ML that produced 0.07% and 0.48% for a small

dataset of 10,713 Hindi words. In [8], an Arabic rule-based G2P obtained a PER

of 0.81% for 3,440 words. In this paper, PER is the error rate at the phoneme

level, which is calculated as the number of phoneme errors divided by the total

number of phonemes that appeared in the testing set. Meanwhile, WER is the25

error rate at the word level, which is computed as the number of word errors

divided by the total number of words that appeared in the testing set.

The conventional ML-based G2P models commonly achieve acceptable error

rates, even for some quite complex languages using low computational resources.

In [9], two-stage processing of conditional random fields (CRF) successfully30

converted a large dataset of Thai words into their pronunciations with WER of

9.94%. In [10], a joint sequence model produced PER and WER of 1.7% and

10.0%, respectively, for a large dataset of Myanmar. In [11], a dynamic finite

generalization (DFGA)-based English G2P achieved PER and WER of 6.86%

2

and 26.49%, respectively, for a dataset of 27,040 words.35

Meanwhile, the DL-based G2P models generally produce state-of-the-art

performances for most languages in the world. It is able to generalize the

sequence-to-sequence dataset very well. For example, in [10], a Transformer-

based G2P gives both PER and WER of 1.8% and 10.4%, respectively, for a large

Myanmar dataset. In English, a G2P model, which is based on a convolutional40

neural network (CNN) and bidirectional long short-term memory (BiLSTM),

obtains PER of 4.81% and WER of 25.13% for the CMUDict dataset [12]. This

model contains two components: an encoder (using CNN with residual con-

nections) and a decoder (using Bi-LSTM). This model can handle short (less

than six characters), medium (six to ten characters), and long (more than ten45

characters) words. In other words, it performs well on all range dependencies.

Furthermore, it gives more phoneme errors in the first half of a word than in the

second half. The errors in the first half of a word can decrease the accuracy in

the next half. The correct phoneme in the first half of a word does not increase

the accuracy in the second one [12]. Another model based on Transformer 4× 450

achieves similar PER and WER of 5.23% and 22.1% for the CMUDict dataset

[13]. Finally, in [14], a novel agreement on target-bidirectional RNN produces

a competitive PER of 5.00% and the lowest WER of 21.2% for the dataset.

It is slightly better to handle the long words than both CNN-BiLSTM and

Transformer 4 × 4.55

In some cases, the DL-based G2P can be applied to low-resource languages

[15]. Besides, it can also be massively used for multilingual G2P models [16].

Unfortunately, it requires high computation resources to train the model for

hundreds or even thousands of epochs. Therefore, it should be developed by

considering the size of the available dataset. For low-resource languages, such60

as Indonesian, it can be built using either a rule-based or a conventional ML-

based approach. In contrast, for high-resource languages, such as English and

European, it is better to be developed using a DL-based approach.

However, a combination of the three approaches is possible to be created.

Some specific linguistic rules can be incorporated into either conventional ML65

3

or DL to obtain a better performance. For example, in [17], applying the lin-

guistic knowledge in Khmer improves the performance of weighted finite-state

transducer (WFST), where the PER can be reduced from 23.2% to 11.1%. In

[4], inserting both syllabification and lexical stress into a sequence-to-sequence

Romanian G2P obtains a relatively low PER of up to 0.38%.70

Meanwhile, in the case of the Indonesian language, combining a set of phono-

tactic rules into a pseudo nearest neighbor rule (PNNR)-based G2P achieves a

low PER of 0.93% for 50 k words [18]. Combining points of syllabifications (the

boundaries between syllables, such as a word ’con.clu.sion’ has two points of

syllabification that split the word into three syllables: ’con’, ’clu’, and ’sion’)75

into the model relatively reduces the PER to be 0.83% [19]. Unfortunately,

it produces many errors that are caused by the ambiguities of some roots and

derivatives that contain four prefixes: 〈ber〉, 〈meng〉, 〈peng〉, and 〈ter〉. Those

prefixes generate many words that have conversion ambiguity with the roots

[18], such as a grapheme 〈e〉 in a root ’berang ’ (irascible) is pronounced as /E/,80

but 〈e〉 in a derivative word ’berangin ’ (windy) is converted into /@/ because

’ber’ is a prefix for the basic word ’angin ’ (wind) that is always pronounced as

/b@r/; the grapheme 〈e〉 in the root ’memang ’ (indeed) is pronounced as /E/, but

〈e〉 in the derivative word ’memangsa ’ (to prey) is converted into /@/ because

’me’ is a prefix for the basic word ’mangsa ’ (prey) that is pronounced as /m@/;85

the grapheme 〈e〉 in the root ’peroksida ’ (peroxide) is pronounced as /E/, but

〈e〉 in a derivative word ’perokok ’ (smoker) is converted into /@/ because ’pe’

is a prefix for the basic word ’rokok ’ (cigarette) that is always pronounced as

/p@/; the grapheme 〈e〉 in a basic word ’pering ’ (tuberculosis) is pronounced as

/E/, but 〈e〉 in a derivative word ’teringat ’ (remembered) is converted into /@/90

because ’ter’ is a prefix for the basic word ’ingat ’ (remember) that is pronounced

as /t@r/. Those cases of grapheme sequences are challenging to be solved using

both conventional ML and DL.

Moreover, affixes in Indonesian create many long words. A preliminary study

on the dataset of 50 k words, which are collected from the Great Dictionary of95

the Indonesian Language or Kamus Besar Bahasa Indonesia (KBBI), the third

4

edition, developed by the Language Center or Pusat Bahasa, shows that the

Indonesian has 8.02 characters per word on average. The dataset contains up to

401 k characters, including a dash symbol, where 385 k of them are graphemes

(26 alphabets): 〈a〉 to 〈z〉.100

Furthermore, Table 1 illustrates eight (of the twenty six) graphemes and their

possible phonemes, which are part of a detailed observation in [18], that are most

challenging in case of the Indonesian G2P. Meanwhile, 18 other graphemes are

not listed here since they are easily converted into two possible phonemes using

a simple rule or even into exactly one phoneme. It can be seen in the table105

that the grapheme 〈a〉 is the most frequently pronounced as /A/ (up to 54 k)

among the three other phonemes: /aI/, /aU/, and /A+P/ that are lower than

1 k. However, there are some issues regarding to a diphthong, which is a glid-

ing vowel in the articulation of which there is a continuous transition from one

position to another, such as the vowels contained in both words ’ice’ and ’out’110

that are represented as diphthongs /aI/ and /aU/, respectively. In Indonesian

language, the grapheme 〈a〉 that is followed by a grapheme 〈i〉, which generates

a grapheme sequence 〈ai〉, is not always converted into a diphthong /aI/, but

it can also be pronounced as either /a/ or /A+P/, with no certain rule. For

instances, ’baik ’ (good), ’abai ’ (ignore), and ’bait’ (verse) are pronounced as115

/bAik/, /AbaI/, and /bA+Pit/, respectively. Fortunately, there is a phonotactic

constraint that the grapheme sequence 〈ai〉 is not possible to be pronounced as

a phoneme /aU/. Those facts show that the grapheme 〈a〉 is quite challenging

to be converted into the correct phoneme.

Meanwhile, a grapheme 〈e〉 is possibly converted into one of the five different120

phonemes: /E/, /@/, /eI/, /E+P/, and /@+P/. It can be more challenging to

convert a grapheme 〈e〉 into phoneme /E/ or /@/ since they dynamically change

with no particular rule, and their frequencies are so high: up to 10.49% (2.56%

and 7.93% each). They come from the ambiguities of the roots and the derivative

words (the words formed from other words or roots, such as conclusion that is de-125

rived from a root conclude) containing the four prefixes: 〈ber〉, 〈meng〉, 〈peng〉,

and 〈ter〉. Hence, in [18], the conversion of grapheme 〈e〉 into /E/ and /@/ is

5

reported to contribute many errors.

Next, the grapheme 〈g〉 can be arbitrarily converted into either /g/ or /*/

with no definite rule. The grapheme 〈i〉 can also be converted at random into130

either /i/ or /*/ when it is preceded by one of the three graphemes: 〈a〉, 〈e〉,

and 〈o〉 with no particular rule. Furthermore, four other graphemes: 〈k〉, 〈n〉,

〈o〉, and 〈u〉, also give some challenges regarding the phonotactic constraints.

In this research, a new ML-based Indonesian G2P model called n-gram

combined with a stemmer, phonotactic rules, and the syllabification points135

(NGTSP) is proposed to solve such problems. One of the state-of-the-art G2P

models, which uses a Transformer 4 × 4 described in [13], is also investigated to

confirm the NGTSP performance.

2. Research Method

The proposed NGTSP model is shown in Fig. 1. The syllabification point140

is incorporated into the input grapheme sequence because it can lower the PER

and solves ambiguous conversions of derivative words [19]. The data set con-

sisting of 50 k syllabified Indonesian words used in this research is the same as

in [19], which is representative enough since those words are collected from the

KBBI. The n-gram tagger, which is a tagger that implements a hidden Markov145

model (HMM) that tags an item based on the maximized conditional probability

depending on the fixed context size of previous tags occurrence (in this research,

the tagger is tagging graphemes into phoneme tags), is adapted from the one

used in Indonesian syllabification [20] for two reasons: 1) it gives a low error rate

with an efficient process, and 2) it works in a similar way to the G2P task. In a150

syllabification task, the n-gram tagger is a binary-class model that just classifies

a given sequence of graphemes into two classes: ’syllabification point’ and ’not

syllabification point’. Meanwhile, in a G2P task, it should be a multi-class model

since a grapheme can be converted into three possible phonemes or more. Hence,

some modifications are introduced as follows. First, the syllabification points are155

recognized as a character and included in the tag encoding, which is the tagger

6

Table 1: Eight Indonesian graphemes and their possible pronunciations in the International

Phonemic Alphabet (IPA), frequencies, as well as percentages in 50 k words, where the symbol

* is a blank (no phoneme), which are adapted from [18]

Grapheme IPA Frequency Percentage

a A 54,859 14.23%

a aI 979 0.25%

a aU 624 0.16%

a A+P 669 0.17%

e E 9,851 2.56%

e @ 30,554 7.93%

e eI 29 0.01%

e E+P 36 0.01%

e @+P 193 0.05%

g g 6,492 1.68%

g * 11,513 2.99%

i i 26,685 6.92%

i * 1,047 0.27%

i i+P 30 0.01%

k k 21,784 5.65%

k x 217 0.06%

k * 19 0.00%

n n 22,143 5.74%

n N 11,779 3.06%

n ñ 3,741 0.97%

o O 13,763 3.57%

o OI 56 0.01%

o O+P 60 0.02%

u u 17,926 4.65%

u * 623 0.16%

u u+P 19 0.00%

7

state generation that converts grapheme to phoneme tag. In this case, the tag

is the corresponding phoneme of the grapheme. The tags are put in sequences

with the order based on their respective appearance in the training data. The

tag sequence is analogous to a state in the Viterbi algorithm used in the tagging160

process. Then, the state-elimination procedure, a process of removing a state

that contains one or more tags that violate an established rule, is adapted to

enforce the fifteen phonotactic-rules listed in Table 2, which are adapted from

[18]. In this case, the rule is based on whether the corresponding phoneme in the

tag is an impossible phoneme (IP) or not. Lastly, emission probability is used in165

conditional probability calculation because there are phonemes that correspond

to more than one grapheme, such as the phoneme /f/ that can be represented

by either the grapheme 〈f〉 or 〈v〉.

Figure 1: Phonemicization process of the proposed n-gram-based G2P for a root ”ca.ir”

(liquid) and a derivative ”men.ca.ir.kan” (to melt)

2.1. Stemming

Stemming is the process of reducing an inflected or derived word to its root170

(base or stem) form, such as the derived word ’fishing’ is reduced to its root ’fish’.

8

In this research, the stemming is carried out using a confix-stripping approach

called CS Stemmer, which is a process of removing a confix (a combination of

prefix and suffix in a word) based on the order of appearance using a root word

dictionary [21]. This stemming model (stemmer) can separate the root from175

derivative words that contain a certain combination of prefix and suffix. For

example, the word ”perjalananku” (my journey) come from the root ”jalan”

(road) with prefix 〈per〉 and two suffixes, 〈an〉 and 〈ku〉. However, as the input

consists of a syllabified grapheme sequence, the stemmer is modified to consider

the syllabification points.180

Certain affixes might be syllabified differently based on the root word. For

example, the word ”mengambil” (to take) from the root ”ambil” (take) is syl-

labified as 〈me.ngam.bil〉, where the word ”menggapai” (to reach) from the root

”gapai” (reach) is syllabified as 〈meng.ga.pai〉. The prefix 〈meng〉 can be syllab-

ified either as 〈me.ng〉 or 〈meng.〉. The stemmer needs to consider all possible185

syllabification for all affixes.

2.2. Tag encoding

Each grapheme from the input can have one or more corresponding phoneme

tags. For example, the grapheme sequence 〈a〉 has four possible phonemes: /A/,

/aI/, /aU/, and /A+P/, thus can be encoded to four different tags. Based on all190

possible phonemes from each grapheme in the input, states containing phoneme

tag sequence with length k are generated, where k is n−1 and n is the order size

of the n-gram. As illustrated in Fig. 2, the phoneme tag sequence in each state

is a subset from one of all possible phoneme tag sequence combination from the

input word. Also note that since the input is a syllabified grapheme sequence,195

the syllabification point is also encoded into its own tag.

For affixes obtained at the stemming step, the grapheme to phoneme encod-

ing is one-to-one for each grapheme because there is only one possible phoneme

for each grapheme contained in the affixes. For example, the phoneme sequence

of the prefix 〈meng〉 is always 〈m@N*〉 regardless of the word. Therefore, even200

though the grapheme 〈e〉 can originally be encoded to five different phonemes,

9

Figure 2: Tag encoding for each grapheme from the input word ”ca.ir” (melt)

it will only be encoded to a single phoneme /@/.

2.3. Phonotactic rule-based state elimination

Applying phonotactic rule in Indonesian phonemicization can reduce the

PER significantly, as shown in [18]. The same phonotactic rule, listed in Table205

2, is used by utilizing the state-elimination as described in [20]. The state-

elimination is modified to recognize impossible phonemes (IP), which are the

phonemes that cannot be the pronunciation of the given grapheme due to the

phonotactic rules in a language. For each possible phoneme of a given grapheme

from the input, the phoneme is decided to be IP or not based on the previous210

grapheme and the next grapheme. A tag will be discarded if it contains one or

more IP. For example, the state 〈aU, .〉 in Fig. 2 contains the phoneme /aU/.

Based on the second phonotactic rule, the phoneme /aU/ is an IP because the

next grapheme of the corresponding grapheme 〈a〉 is 〈i〉, not 〈u〉.

2.4. n-Gram tagger215

To generate the optimum phoneme sequence from the input, the tagger finds

the most likely phoneme tag sequence using conditional probability and the

Viterbi algorithm [20], which is a dynamic programming algorithm that works

efficiently for so many possible sequences of hidden states. For a grapheme

sequence gn
1 = g1, g2, ∙ ∙ ∙ , gn, the tagger will find the optimum phoneme tag se-220

quence tn1 = t1, t2, ∙ ∙ ∙ , tn that maximizes the conditional probability of P (tn1 |g
n
1),

10

Table 2: Fifteen phonotactic rules, which are adapted from [18] to reduce the potential

phonemes, where G is the grapheme, P is the phoneme list, L1 and R1 is the first contextual

grapheme on the left and right, respectively

Number Rule

1 if G = 〈a〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/aI/}

2 if G = 〈a〉 and R1 /∈ {〈u〉,〈w〉} then P /∈ {/aU/}

3 if G = 〈e〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/eI/}

4 if G = 〈e〉 and R1 /∈ {〈a〉,〈e〉,〈i〉,〈o〉,〈u〉} then P /∈ {/E+P/,/E+P/}

5 if G = 〈g〉 and L1 /∈ {〈n〉} then P /∈ {/*/}

6 if G = 〈i〉 and L1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/*/}

7 if G = 〈i〉 and R1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/i+P/}

8 if G = 〈k〉 and R1 /∈ {〈h〉} then P /∈ {/x/}

9 if G = 〈n〉 and R1 /∈ {〈c〉,〈j〉,〈s〉 〈y〉 then P /∈ {/ñ/}

10 if G = 〈n〉 and R1 /∈ {〈g〉,〈k〉} then P /∈ {/N/}

11 if G = 〈o〉 and R1 /∈ {〈i〉,〈y〉} then P /∈ {/OI/}

12 if G = 〈s〉 and R1 /∈ {〈y〉} then P /∈ {/S/}

13 if G = 〈u〉 and L1 /∈ {〈a〉} then P /∈ {/*/}

14 if G = 〈u〉 and R1 /∈ {〈a〉,〈e〉,〈o〉} then P /∈ {/u+P/}

15 if G = 〈y〉 and L1 /∈ {〈n〉,〈s〉} then P /∈ {/*/}

which is formulated as

arg max
tn
1

P (tn1 |g
n
1) = arg max

tn
1

P (tn1)P (gn
1 |t

n
1). (1)

P (tn1) is a probability of phoneme tag sequence tn1 , where each tag ti depends

on the k previous tags by using Markov assumption. It means k is the contextual

size (the number of tags taken into account in the probability calculation). Thus,225

P (tn1) can be formulated as

P (tn1) =
n∏

i=1

P (ti|ti−k, ∙ ∙ ∙ , ti−1). (2)

For each phoneme tag ti, the probability of emitting a grapheme gi is the

11

emission probability P (gi|ti). So P (gn
1 |t

n
1) can be formulated as

P (gn
1 |t

n
1) =

n∏

i=1

P (gi|ti). (3)

By putting together Eq. (2) and Eq. (3) into Eq. (1), the final formula to

find the most likely phoneme tag sequence tn1 of the grapheme sequence gn
1 is as230

follows

arg max
tn
1

P (tn1 |g
n
1) = arg max

tn
1

n∏

i=1

(P (ti|ti−k, ∙ ∙ ∙ , ti−1)P (gi|ti)). (4)

As explained in [20], Generalized Modified Kneser-Ney (GKN) [22] is used as

the smoothing technique (a method that computes the probability more accu-

rately to deal with data sparsity in the dataset) to calculate P (ti|ti−k, ∙ ∙ ∙ , ti−1)

in Eq (4). GKN has discount bound parameter B, which functions to determine235

the number of discount parameters for smoothing process.

Finally, the Viterbi algorithm is exploited to optimize the phoneme tag se-

quence since it is a dynamic programming algorithm, which works efficiently to

find the highest scoring path by reusing a calculated result in the next calcula-

tion to save time, as illustrated in Fig. 3. Each grapheme from the input repre-240

sents a single time-state. Each time-state has a corresponding set of states from

the encoding that represents the present grapheme and k previous grapheme.

Given a particular state Si, the transition to another state Sj is the transition

probability Aij which is the conditional probability of P (tjk
1 |ti

k
1). Each state

also has emission probabilities of P (gn
1 |t

n
1) that represent the probabilities of245

making certain observations of a grapheme at that state. The Viterbi algorithm

yields the optimum path that has a phoneme tag sequence with the maximum

probability.

3. Results and Discussion

All the developed G2P models are evaluated using 50 k Indonesian words250

based on 5-fold cross-validation, which is a resampling procedure to create five

12

Figure 3: Visualisation for the Viterbi algorithm with the input word ”ca.ir” (melt)

new datasets commonly used to evaluate machine learning models on a limited

dataset to prevent an accidental result. The original dataset of 50 k words is

divided randomly into five subsets or folds (each contains 10 k unique words).

Hence, five new datasets are created. The first new dataset consists of Fold 1 to255

4 for training a model and Fold 5 for testing the trained-model; the second one

contains Fold 1, 2, 3, and 5 for training and Fold 4 for testing, and so on until

the fifth dataset. The n-gram tagger is firstly evaluated without stemmer and

phonotactic rules. Then, the addition of stemmer and phonotactic rules to the

n-gram tagger are separately evaluated. Finally, the n-gram tagger is evaluated260

with both stemmer (stemming model) and phonotactic rules (knowledge that

define what sound sequences are possible and what other sound sequences are

not possible in a language).

Some experiments are performed to optimize the parameters of the four mod-

els. The optimum models are then compared to the state-of-the-art Transformer-265

based G2P model using both PER and WER. Next, some detailed investigations

are carried out to see the factors that contribute to the WER. Finally, the pro-

cessing time is also carefully investigated.

13

3.1. Optimization of the parameters

As described in [20], the n-gram tagger needs two parameters to be tuned,270

the n-gram order n and discount bound B. As illustrated in Fig 4, the optimum

n values for the n-gram tagger (NGT), n-gram tagger with stemmer (NGTS), n-

gram tagger with phonotactic rules (NGTP), and n-gram tagger with stemmer

and phonotactic rules (NGTSP) are all n = 7. Fig 5 shows that the optimum

B values for NGT, NGTS, and NGTP are 19, while for NGTSP is 18. The275

PER spikes at B = 16 since the number of unique grams with the continuation

count 16 is unusually low for a lower order 6-gram. The continuation count

for lower-order n-grams is used in probability smoothing calculation. The low

unique grams count at a discount bound (B) makes the discount too small and

affects the probability calculation. This anomaly only happens with Fold 1, 2,280

and 3 causing their PER to be quite higher than Fold 4 and 5. The B values

are limited to 19 in these models. According to the GKN discount formula

described in [22], for B = i the n-gram model needs to have at least one unique

gram item with a frequency of 1 to i. Since for n = 7 there is no gram item in

the model that has a frequency of 20, B = 20 gives a computational error of285

division by zero in the discount value calculation.

3.2. Comparison of the models

The PERs produced by all G2P models using those optimum parameters,

and the comparison with the Transformer-based G2P model, are illustrated in

Figure 6. NGT produces an average PER of 1.21% with a low standard deviation290

(STD) of 0.02%. The stemmer in NGTS reduces the PER by 10.06%, giving

an average PER of 1.09% with an STD of 0.03%. Incorporating phonotactic

rules in NGTP decreases the average PER to be 0.79% with STD of 0.02%.

Combining stemmer and phonotactic rules in NGTSP gives a relative reduction

by up to 35.93%, which reaches the cheapest average PER of 0.78% with STD of295

0.02%. However, this result is not significantly different from that produced by

the NGTP. A detailed investigation finds that the portion of derivative words

is just 16% of the testing set, which can be mostly solved by enforcing the

14

Figure 4: Average PER for NGT, NGTS, NGTP, and NGTSP with B = 3 for varying n

Figure 5: Average PER for NGT, NGTS, NGTP, and NGTSP with n = 7 for varying B

phonotactic rules. Finally, the Transformer-based G2P model produces a worse

performance, where the mean PER is much higher (up to 1.14%) and unstable300

(with a bigger STD of 0.20%).

Meanwhile, the WER for all G2P models, and the comparison with the

15

Transformer-based G2P model, are illustrated in Figure 7. NGT produces an

average WER of 8.77% with a low STD of 0.19%. The stemmer in NGTS

reduces the WER by 10.06%, giving an average WER of 7.88% with an STD305

of 0.22%. Incorporating phonotactic rules in NGTP reduces the mean WER to

be 5.74% with an STD of 0.20%. Combining stemmer and phonotactic rules in

NGTSP gives a relative decrement by up to 35.70%, which obtains the lowest

mean WER of 5.64% with an STD of 0.22%. Finally, the Transformer-based

G2P model shows a worse performance, where the average WER is much higher310

(up to 8.20%) and unstable (with a much bigger STD of 1.46%).

Figure 6: PERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indone-

sian G2P models

3.3. Contributions to WER

Furthermore, four detailed investigations are performed regarding the WERs

produced by both NGT and NGTSP to see the impacts of both stemmer and

phonotactic rules. Based on 5-fold cross-validation datasets, both NGT and315

NGTSP produce 897 and 572 word-errors on average that obtain WERs of

8.77% and 5.64%, respectively, as shown in Fig. 7. First, the numbers of

phoneme errors in a word are evaluated to see their impact on the WERs. The

contributions of three word-categories to the WERs are then investigated. Next,

16

Figure 7: WERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indone-

sian G2P models

the contributions of the grapheme 〈e〉 and the others are investigated. Finally,320

the impacts of the four prefixes to the WERs are also investigated.

The first investigation shows that the WERs produced by both NGT and

NGTSP mostly come from the words with one phoneme error (more than 90%)

and the words with two phoneme errors (more than 8%). Meanwhile, a low

(less than 1%) WER comes from the words with three and four phoneme errors.325

However, NGTSP gives slightly higher WER from the words with one phoneme

error, but it obtains slightly lower WERs from the words with two, three, and

four phoneme errors. These results explain why the relative reduction in WER

(35.93%) is slightly smaller than in PER (35.70%).

The 50 k words in the dataset are categorized as Short, Medium, and Long,330

which are defined as less than six characters, between six and ten characters, and

more than ten characters [12], with their percentages are 19.90%, 62.48%, and

17.62%, respectively. The investigation shows that WERs produced by both

NGT and NGTSP are mostly (62.99% and 63.32%, respectively) come from

the medium words only. The exciting results are given by both short and long335

words, where NGTSP gives a higher WER (24.02%) than NGT (19.44%) for the

short words, but it reaches much lower WER (12.67%) than NGT (17.57%) for

17

the long words. The more detailed investigation shows that NGTSP is capable

of solving the word errors caused by the phonotactic constraints as well as the

four prefixes (contained in long words) produced by NGT.340

A large portion of the WER produced by NGT comes from the grapheme

〈e〉 with the corresponding phoneme /E/ or /@/, which contributes up to 90.31%

of the WER. The phoneme /E/ and /@/ can be used interchangeably without

limitation from any phonotactic rule. Meanwhile, the other graphemes relating

to the phonotactic constraints only contribute to 9.69% of the WER. In NGTSP,345

the grapheme 〈e〉 contributes up to 96.28% to the WER, but the others only

3.72%. This result shows that the phonotactic rules, which are incorporated as

a state-elimination procedure in NGTSP, can solve many errors regarding the

phonotactic constraints. Besides, the stemmer used in NGTSP also solve some

errors relating to the grapheme 〈e〉 contained in the four prefixes: 〈ber〉, 〈meng〉,350

〈peng〉, and 〈ter〉. These facts prove that the combination of both stemmer

and phonotactic rules, which are the main contribution of this research, can

significantly reduce the WER produced by the baseline NGT model.

A detailed observation is then performed on the WERs that come from both

phonotactic constraints and prefixes. It shows that only 11.76% (104 of 897355

words) of the WER produced by NGT comes from the four prefixes and 88.24%

(793 of 897 words) from the phonotactic constraints in the roots. Meanwhile,

the stemmer and phonotactic rules in NGTSP gives a significant error reduction,

where only 1.51% (9 of 572) of the WER come from the four prefixes and 98.49%

(563 of 572 words) from the phonotactic constraints in the roots. Based on this360

fact, it can be implied that the stemmer is proportionally more effective than

the phonotactic rules in reducing the WER. However, since the errors come from

the phonotactic constraints are much more than the prefixes, it can be said that

the phonotactic rules used in NGTSP contribute more WER decrement than

the stemmer.365

3.4. Processing time

Both training and testing are run on an Intel Core i5-8300H processor and 8

18

GB of DDR4 with GPU NVidia Geforce GTX 1050Ti. In the training process,

the four G2P models: NGT, NGTS, NGTP, and NGTSP use the same 7-gram

model that takes about 6 seconds to train 40 k words on average, which is much370

faster than the Transformer-based G2P model that needs 72,080 seconds (20

hours), as shown in Table 3. The four n-gram models work linearly in the one-

pass process to develop the 7-gram from the given training set of 40 k words

while the Transformer works iteratively for two thousand epochs. The three

models: NGTS, NGTP, and NGTSP, require the same time as NGT since they375

do not need any training process to develop the stemmer and/or the phonotactic

rules. Instead, both stemmer and phonotactic rules are implemented using the

predefined dictionary and rules that are manually developed by a linguist.

In the testing process, the four n-gram models need more time than in the

training one since they should find the best phoneme combination using the380

Viterbi algorithm. However, they require various average times to test 10 k

words. NGT is the slowest one (128 seconds) since it searches in all phoneme

combinations. NGTS is slightly faster (98 seconds) as the number of phoneme

combinations is reduced by stemming some derivative words. NGTP is the

fastest one (16 seconds) as the number of phoneme combinations are signifi-385

cantly decreased by the phonotactic rules. Meanwhile, NGTSP requires a little

more time (20 seconds) because of the dictionary look-up time by the stemmer.

However, it is much faster than the Transformer (37 seconds).

Hence, the results conclude that the proposed NGTSP is much more efficient

than the Transformer-based G2P in both training and testing processes. During390

the implementation and the parameter tuning, it is also much simpler than the

Transformer.

4. Conclusion

The Indonesian G2P model, based on n-gram tagger combined with stemmer

and phonotactic rules (NGTSP), is successfully developed. The 5-fold cross-395

validation using 50 k words shows that the stemmer can decrease the average

19

Table 3: Average processing time in both training and testing processes of NGT, NGTS,

NGTP, NGTSP, and Transformer-based G2P models for the 5-fold cross-validation datasets

Model Training time (seconds) Testing time (seconds)

NGT 6 128

NGTS 6 98

NGTP 6 16

NGTSP 6 20

Transformer 72,080 37

PER by 10.06% (from 1.21% to 1.09%). Meanwhile, the phonotactic rules reduce

the average PER to be 0.79%. Combining both stemmer and phonotactic rules

is capable of giving a relative decrement by up to 35.93% and 35.70%, which

obtains the lowest mean PER and WER of 0.78% and 5.64% (STD of 0.01%400

and 0.04%), respectively. This result is much lower and more stable than the

Transformer-based G2P model, one of the state-of-the-art deep learning models,

which produces the average PER and WER of 1.14% and 8.20% with STD of

0.20% and 1.46%, respectively. The detailed investigations prove that both

stemmer and phonotactic rules can reduce word errors caused by the prefixes405

and the phonotactic violations. The stemmer slightly increases, but the phono-

tactic rules drastically reduces, the testing time. In the future, a more efficient

stemmer can be exploited to improve the NGTSP model.

References

[1] E. D. Emiru, Y. Li, S. Xiong, A. Fesseha, Speech recognition system based410

on deep neural network acoustic modeling for low resourced language-

Amharic, in: ACM International Conference Proceeding Series, Association

for Computing Machinery, 2019, pp. 141–145.

[2] S. Achanta, A. Pandey, S. V. Gangashetty, Analysis of sequence to se-

quence neural networks on grapheme to phoneme conversion task, in: 2016415

20

International Joint Conference on Neural Networks (IJCNN), 2016, pp.

2798–2804. doi:https://doi.org/10.1109/IJCNN.2016.7727552.

[3] I. Hadj Ali, Z. Mnasri, Z. Lachiri, Dnn-based grapheme-to-phoneme con-

version for arabic text-to-speech synthesis, International Journal of Speech

Technology 23 (3) (2020) 569–584. doi:10.1007/s10772-020-09750-7.420

[4] A. Stan, Input encoding for sequence-to-sequence learning of romanian

grapheme-to-phoneme conversion, Institute of Electrical and Electronics

Engineers Inc., 2019. doi:10.1109/SPED.2019.8906639.

[5] S. Suyanto, S. Hartati, A. Harjoko, D. V. Compernolle, Indonesian syllabi-

fication using a pseudo nearest neighbour rule and phonotactic knowledge,425

Speech Communication 85 (2016) 109–118. doi:http://dx.doi.org/10.

1016/j.specom.2016.10.009.

[6] J. Švec, J. V. Psutka, J. Trmal, L. Smfdl, P. Ircing, J. Sedmidubsky, On

the Use of Grapheme Models for Searching in Large Spoken Archives, in:

2018 IEEE International Conference on Acoustics, Speech and Signal Pro-430

cessing (ICASSP), 2018, pp. 6259–6263. doi:https://doi.org/10.1109/

ICASSP.2018.8461774.

[7] T. Patil, D. Magdum, M. Suman, Grapheme to phoneme conversion rules

for hindi, Journal of Advanced Research in Dynamical and Control Systems

11 (5 Special Issue) (2019) 1757–1761.435

[8] B. Al-Daradkah, B. Al-Diri, Automatic grapheme-to-phoneme conversion

of Arabic text, in: 2015 Science and Information Conference (SAI), 2015,

pp. 468–473. doi:https://doi.org/10.1109/SAI.2015.7237184.

[9] A. Rugchatjaroen, S. Saychum, S. Kongyoung, P. Chootrakool, S. Kasuriya,

C. Wutiwiwatchai, Efficient two-stage processing for joint sequence model-440

based thai grapheme-to-phoneme conversion, Speech Communication 106

(2019) 105–111, cited By 3. doi:10.1016/j.specom.2018.12.003.

21

http://dx.doi.org/10.1016/j.specom.2018.12.003
http://dx.doi.org/https://doi.org/10.1109/SAI.2015.7237184
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2018.8461774
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2018.8461774
http://dx.doi.org/http://dx.doi.org/10.1016/j.specom.2016.10.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.specom.2016.10.009
http://dx.doi.org/10.1109/SPED.2019.8906639
http://dx.doi.org/10.1007/s10772-020-09750-7
http://dx.doi.org/https://doi.org/10.1109/IJCNN.2016.7727552

[10] A. Hlaing, W. Pa, Sequence-to-sequence models for grapheme to phoneme

conversion on large myanmar pronunciation dictionary, Institute of Electri-

cal and Electronics Engineers Inc., 2019. doi:10.1109/O-COCOSDA46868.445

2019.9041225.

[11] H. Chen, English phonetic synthesis based on dfga g2p conversion algo-

rithm, Vol. 1533, Institute of Physics Publishing, 2020. doi:10.1088/

1742-6596/1533/3/032031.

[12] S. Yolchuyeva, G. Nmeth, B. Gyires-Tth, Grapheme-to-phoneme conver-450

sion with convolutional neural networks, Applied Sciences (Switzerland)

9 (6), cited By 1. doi:10.3390/app9061143.

[13] S. Yolchuyeva, G. Nmeth, B. Gyires-Tth, Transformer based grapheme-to-

phoneme conversion, Vol. 2019-September, International Speech Commu-

nication Association, 2019, pp. 2095–2099. doi:10.21437/Interspeech.455

2019-1954.

[14] L. Liu, A. Finch, M. Utiyama, E. Sumita, Agreement on target-

bidirectional recurrent neural networks for sequence-to-sequence learn-

ing, Journal of Artificial Intelligence Research 67 (2020) 581–606. doi:

10.1613/JAIR.1.12008.460

[15] P. Jyothi, M. Hasegawa-Johnson, Low-Resource Grapheme-to-Phoneme

Conversion Using Recurrent Neural Networks, in: IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

doi:https://doi.org/10.1109/ICASSP.2017.7953114.

[16] B. Peters, Massively Multilingual Neural Grapheme-to-Phoneme Conver-465

sion, in: the First Workshop on Building Linguistically Generalizable

NLP Systems, 2017, pp. 19–26. doi:http://dx.doi.org/10.18653/v1/

W17-5403.

[17] V. Sar, T.-P. Tan, Applying linguistic g2p knowledge on a statistical

22

http://dx.doi.org/http://dx.doi.org/10.18653/v1/W17-5403
http://dx.doi.org/http://dx.doi.org/10.18653/v1/W17-5403
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2017.7953114
http://dx.doi.org/10.1613/JAIR.1.12008
http://dx.doi.org/10.1613/JAIR.1.12008
http://dx.doi.org/10.21437/Interspeech.2019-1954
http://dx.doi.org/10.21437/Interspeech.2019-1954
http://dx.doi.org/10.3390/app9061143
http://dx.doi.org/10.1088/1742-6596/1533/3/032031
http://dx.doi.org/10.1088/1742-6596/1533/3/032031
http://dx.doi.org/10.1109/O-COCOSDA46868.2019.9041225
http://dx.doi.org/10.1109/O-COCOSDA46868.2019.9041225

grapheme-to-phoneme conversion in khmer, Vol. 161, Elsevier B.V., 2019,470

pp. 415–423. doi:10.1016/j.procs.2019.11.140.

[18] Suyanto, S. Hartati, A. Harjoko, Modified Grapheme Encoding and Phone-

mic Rule to Improve PNNR-Based Indonesian G2P, International Jour-

nal of Advanced Computer Science and Applications 7 (3). doi:https:

//dx.doi.org/10.14569/IJACSA.2016.070358.475

[19] S. Suyanto, Incorporating syllabification points into a model of grapheme-

to-phoneme conversion, International Journal of Speech Technology 22 (2)

(2019) 459–470. doi:https://doi.org/10.1007/s10772-019-09619-4.

[20] R. N. Ismail, S. Suyanto, Indonesian Graphemic Syllabification Using n

-Gram Tagger with State-Elimination, in: 2020 8th International Con-480

ference on Information and Communication Technology (ICoICT), 2020.

doi:https://doi.org/10.1109/ICoICT49345.2020.9166368.

[21] M. Adriani, J. Asian, B. Nazief, S. M. Tahaghoghi, H. E. Williams, Stem-

ming Indonesia: A Confix-Stripping Approach, ACM Transactions on

Asian Language Information Processing 6 (4) (2007) 1–33. doi:https:485

//doi.org/10.1145/1316457.1316459.

[22] E. Shareghi, T. Cohn, G. Haffari, Richer Interpolative Smoothing Based on

Modified Kneser-Ney Language Modeling (2016) 944–949doi:10.18653/

v1/d16-1094.

23

http://dx.doi.org/10.18653/v1/d16-1094
http://dx.doi.org/10.18653/v1/d16-1094
http://dx.doi.org/https://doi.org/10.1145/1316457.1316459
http://dx.doi.org/https://doi.org/10.1145/1316457.1316459
http://dx.doi.org/https://doi.org/10.1109/ICoICT49345.2020.9166368
http://dx.doi.org/https://doi.org/10.1007/s10772-019-09619-4
http://dx.doi.org/https://dx.doi.org/10.14569/IJACSA.2016.070358
http://dx.doi.org/https://dx.doi.org/10.14569/IJACSA.2016.070358
http://dx.doi.org/10.1016/j.procs.2019.11.140

Conflict of Interest Statement

On behalf of the authors, I declare that we have no known competing financial interest or personal
relationships that could have appeared to influence the work reported in the manuscript entitled
“Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization”.

The CRediT author statement is as follow. Suyanto Suyanto: Principal Investigator, Conceptualization,
Methodology, Data curation, Supervision, Writing original draft preparation. Andi Sunyoto:
Conceptualization, Methodology, Reviewing and Editing. Rezza Nafi Ismail: Software, Investigation,
Validation. Ema Rachmawati: Reviewing and Editing. Warih Maharani: Reviewing and Editing

October 20, 2020

Authors,

Suyanto Suyanto Andi Sunyoto Rezza Nafi Ismail

Ema Rachmawati Warih Maharani

Conflict of Interest

Author Agreement

Submission of work requires that the piece to be reviewed has not been previously
published. Upon acceptance, the Author assigns to the Journal of King Saud
University – Computer and Information Sciences (JKSUCI) the right to publish and
distribute the manuscript in part or in its entirety. The Author's name will always be
included with the publication of the manuscript.

The Author has the following nonexclusive rights: (1) to use the manuscript in the
Author's teaching activities; (2) to publish the manuscript, or permit its publication, as
part of any book the Author may write; (3) to include the manuscript in the Author's
own personal or departmental (but not institutional) database or on-line site; and (4) to
license reprints of the manuscript to third persons for educational photocopying. The
Author also agrees to properly credit the Journal of King Saud University – Computer
and Information Sciences (JKSUCI) as the original place of publication.

The Author hereby grants the Journal of King Saud University – Computer and
Information Sciences (JKSUCI) full and exclusive rights to the manuscript, all
revisions, and the full copyright. The Journal of King Saud University – Computer
and Information Sciences (JKSUCI) rights include but are not limited to the
following: (1) to reproduce, publish, sell, and distribute copies of the manuscript,
selections of the manuscript, and translations and other derivative works based upon
the manuscript, in print, audio-visual, electronic, or by any and all media now or
hereafter known or devised; (2) to license reprints of the manuscript to third persons
for educational photocopying; (3) to license others to create abstracts of the
manuscript and to index the manuscript; (4) to license secondary publishers to
reproduce the manuscript in print, microform, or any computer-readable form,
including electronic on-line databases; and (5) to license the manuscript for document
delivery. These exclusive rights run the full term of the copyright, and all renewals
and extensions thereof.

I hereby accept the terms of the above Author Agreement.

Author: Suyanto Suyanto Date: 20 October 2020

Editor in Chief:- Nasser-Eddine Rikli Date:-

Author Agreement

1. First submission (23 October 2020)

2. LoA with Minor Revision (27 November 2020)

3. Responses to Reviewers, Final submission (19 Dec 2020)

4. LoA with Fully Accepted (09 January 2021)

5. Proof Reading (16 January 2021)

Evidence of correspondence

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Publication of your article [JKSUCI_951] in Journal of King Saud University -
Computer and Information Sciences is on hold due to file problems
3 messages

a.nagaraj.1@elsevier.com <a.nagaraj.1@elsevier.com> Sat, Jan 9, 2021 at 2:52 PM
To: suyanto@telkomuniversity.ac.id

Our reference: JKSUCI 951
Article reference: JKSUCI_JKSUCIS-D-20-01239
Article title: Stemmer and Phonotactic Rules to Improve n-Gram Tagger-Based Indonesian Phonemicization
To be published in: Journal of King Saud University - Computer and Information Sciences

Dear Dr. Suyanto,

Congratulations on having your article accepted.

We have now received your manuscript in production and would like to begin the typesetting process.

Unfortunately we have encountered a problem with the electronic files you provided and cannot process your article
further until the following issues are resolved:

* We have received your accepted manuscript for publication; however, our typesetters are unable to use PDF files
for typesetting and production purposes. An editable text file that exactly matches the final, accepted version of your
manuscript is required for publication. Please e-mail me the electronic version of your accepted manuscript so that we
may proceed with the publication of your article. Acceptable text file formats include MS Word, Word Perfect, RTF,
TEX and plain ASCII text.

We would be grateful if you could kindly address the problem as quickly as possible, ideally within 48 hours, by
replying to this message.

Further information on acceptable file formats can be found at http://www.elsevier.com/guidepublication.

Please quote the reference for your article, JKSUCI 951, in all of your messages to us.

Thank you for your help with this issue; I look forward to hearing from you soon.

Kind regards,

Mr. A. Muthu
DA
Elsevier
E-Mail: a.nagaraj.1@elsevier.com

HAVE QUESTIONS OR NEED ASSISTANCE?

For further assistance, please visit our Customer Support site, where you can search for solutions on a range of
topics, such as Open Access or payment queries, and find answers to frequently asked questions. You can also talk
to our customer support team by phone 24 hours a day from Monday-Friday and 24/7 by live chat and email.

Get started here: http://service.elsevier.com/app/home/supporthub/publishing

Copyright © 2015 Elsevier B.V. | Privacy Policy http://www.elsevier.com/privacypolicy
Elsevier Limited, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom, Registration No.
1982084

SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id> Sat, Jan 9, 2021 at 4:04 PM
To: a.nagaraj.1@elsevier.com

Dear Mr. A. Muthu,

http://www.elsevier.com/guidepublication
mailto:a.nagaraj.1@elsevier.com
http://service.elsevier.com/app/home/supporthub/publishing
http://www.elsevier.com/privacypolicy

Hereby I attach the source latex of the accepted manuscript JKSUCI 951 in a .rar format.
In this final manuscript, a little revision regarding the editor/reviewer comment is provided as follow:

Editor and Reviewer comments:

Reviewer #1: The authors have greatly improved the paper. It is ready for publishing after making changes according
to the following 2 observations:

1) Define the abbreviation G2P in the abstract.
>> A phonemicization or grapheme-to-phoneme conversion (G2P) is a process of converting a word into its
pronunciation.

2) Are the testing process times mentioned in Section 3.4 for each word or for 10k words i.e. Does NGTP take 16s
per word or for 10k words? Mention it.
>> However, they require various average times to test 10 k words in each fold. NGT is the slowest one (128 seconds
for 10 k words) since it searches in all phoneme combinations. NGTS is slightly faster (98 seconds for 10 k words) as
the number of phoneme combinations is reduced by stemming some derivative words. NGTP is the fastest one (16
seconds for 10 k words) as the number of phoneme combinations are significantly decreased by the phonotactic
rules. Meanwhile, NGTSP requires a little more time (20 seconds for 10 k words) because of the dictionary look-up
time by the stemmer. However, it is much faster than the Transformer (37 seconds for 10 k words).

Table 3. Average processing time in both training and testing processes of NGT, NGTS, NGTP, NGTSP, and
Transformer-based G2P models for the 5-fold cross-validation datasets, where the training time is calculated for 40 k
words and the testing time is for 10 k words.

Sincerely,
Suyanto
[Quoted text hidden]

Accepted Manuscript JKSUCI 951.rar
880K

Nagaraj, Azhagu Muthu (ELS-CHN) <a.nagaraj.1@elsevier.com> Mon, Jan 11, 2021 at 5:05 PM
To: SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>

Dear Dr. Suyanto,

Thank you for your email,

We will check with the provided data and will get back to you in case of any further queries.

If I could be of further assistance, please feel free to contact me. I will glad to assist you.

Thank you,

Best regards,

Azhagu Muthu

Data Administrator,

Elsevier B.V.

Mail – a.nagaraj.1@elsevier.com

https://mail.google.com/mail/u/0?ui=2&ik=ca1e20d620&view=att&th=176e66429dfdaddf&attid=0.1&disp=attd&realattid=f_kjphdk9h0&safe=1&zw
mailto:a.nagaraj.1@elsevier.com

From: SUYANTO SUYANTO <suyanto@telkomuniversity.ac.id>
Sent: 09 January 2021 14:35
To: Nagaraj, Azhagu Muthu (ELS-CHN) <a.nagaraj.1@elsevier.com>
Subject: Re: Publication of your article [JKSUCI_951] in Journal of King Saud University - Computer and Information
Sciences is on hold due to file problems

*** External email: use cau�on ***

[Quoted text hidden]

DISCLAIMER :
This electronic mail and/ or any files transmitted with it may contain confidential or copyright information of Telkom University
and/ or its Subsidiaries. If you are not an intended recipient, you must not keep, forward, copy, use, or rely on this electronic
mail, and any such action is unauthorized and prohibited. If you have received this electronic mail in error, please reply to this
electronic mail to notify the sender of its incorrect delivery, and then delete both it and your reply. Finally, you should check this
electronic mail and any attachments for the presence of viruses. Telkom University accepts no liability for any damages caused
by any viruses transmitted by this electronic mail.

mailto:suyanto@telkomuniversity.ac.id
mailto:a.nagaraj.1@elsevier.com
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftelkomuniversity.ac.id%2F&data=04%7C01%7Ca.nagaraj.1%40elsevier.com%7C28e66513d4b24a8dca7408d8b47da97c%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637457799885566737%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=f%2Bbce4UkKOlX4q9X832%2FCpgyyYKMcfRy%2FqEXv4Alez8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftelkomuniversity.ac.id%2F&data=04%7C01%7Ca.nagaraj.1%40elsevier.com%7C28e66513d4b24a8dca7408d8b47da97c%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637457799885566737%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=f%2Bbce4UkKOlX4q9X832%2FCpgyyYKMcfRy%2FqEXv4Alez8%3D&reserved=0

1. First submission (23 October 2020)

2. LoA with Minor Revision (27 November 2020)

3. Responses to Reviewers, Final submission (19 Dec 2020)

4. LoA with Fully Accepted (09 January 2021)

5. Proof Reading (16 January 2021)

Evidence of correspondence

Stemmer and Phonotactic Rules to Improve n-Gram
Tagger-Based Indonesian Phonemicization

Q1 Stemmer and phonotactic rules to improve n-gram tagger-
based indonesian phonemicization☆ ☆

Q2

Abstract
A phonemicization or grapheme-to-phoneme conversion (G2P) is a process of converting a word into its
pronunciation. It is one of the essential components in speech synthesis, speech recognition, and natural
language processing. The deep learning (DL)-based state-of-the-art G2P model generally gives low
phoneme error rate (PER) as well as word error rate (WER) for high-resource languages, such as English
and European, but not for low-resource languages. Therefore, some conventional machine learning (ML)-
based G2P models incorporated with specific linguistic knowledge are preferable for low-resource
languages. However, these models are poor for several low-resource languages because of various issues.
For instance, an Indonesian G2P model works well for roots but gives a high PER for derivatives. Most

errors come from the ambiguities of some roots and derivative words containing four prefixes: ber , men
 , peng , and ter . In this research, an Indonesian G2P model based on n-gram combined with stemmer

and phonotactic rules (NGTSP) is proposed to solve those problems. An investigation based on 5-fold
cross-validation, using 50 k Indonesian words, informs that the proposed NGTSP gives a much lower
PER of 0.78% than the state-of-the-art Transformer-based G2P model (1.14%). Besides, it also provides a
much

Keywords: grapheme-to-phoneme conversion; Indonesian language; n-gram; Phonotactic rules; Stemmer

1 Introduction

A phonemicization, also known as grapheme-to-phoneme conversion (G2P), is commonly defined as a process of
converting a word (sequence of graphemes) into its pronunciation (sequence of phonemes). A grapheme is a unit (such
as a letter or digraph) of a writing system. Meanwhile, a phoneme is the smallest unit of speech differentiating one word
from another. For instance, the phoneme /b/ in a word ‘cab’ distinguishes that word from ‘can’, ‘cap’, and ‘cat’. A
phonemicization plays important roles in automatically recognizing speech (Emiru et al., 2019), synthesizing speech (

Q3 Achanta et al., 2016; Hadj Ali et al., 2020), developing phonemic syllabification model (Stan, 2019; Suyanto et al.,
2016) and many other applications in the speech and linguistics areas (Švec et al., 2018).

A G2P can be developed using a rule-based approach, a conventional ML-based approach, or a DL-based approach.
The performances of those approaches are commonly based on the complexity of the phonotactic rules of a language,
which represents how strong the relation between graphemes and phonemes. The rule-based G2P models generally
give high performances for some simple languages that have low phonotactic rules with few exceptions so that the

Suyanto Suyantoa,⁎ suyanto@telkomuniversity.ac.id, Andi Sunyotob andisunyoto@amikom.ac.id

andi@amikom.ac.id, Rezza Nafi Ismaila zafitract@student.telkomuniversity.ac.id, Ema Rachmawatia

emarachmawati@telkomuniversity.ac.id, Warih Maharania wmaharani@telkomuniversity.ac.id

aSchool of Computing, Telkom University, Bandung, Indonesia

bFaculty of Computer Science, Universitas Amikom Yogyakarta, Indonesia

⁎Corresponding author.

i The corrections made in this section will be reviewed and approved by a journal production editor.

mailto:suyanto@telkomuniversity.ac.id
mailto:andisunyoto@amikom.ac.id
mailto:andi@amikom.ac.id
mailto:zafitract@student.telkomuniversity.ac.id
mailto:emarachmawati@telkomuniversity.ac.id
mailto:wmaharani@telkomuniversity.ac.id

graphemes are strongly related to the phonemes (such as Hindi and Arabic), but it produces low accuracy for the

complex ones. In Patil et al. (2019), a Hindi rule-based G2P was reported to give a low phoneme error rate (PER) and

a low word error rate (WER) of 0.20% and 0.62%, respectively, which is competitive with a decision tree (DT)-based

conventional ML that produced 0.07% and 0.48% for a small dataset of 10,713 Hindi words. In Al-Daradkah and Al-

Diri (2015), an Arabic rule-based G2P obtained a PER of 0.81% for 3,440 words. In this paper, PER is the error rate at

the phoneme level, which is calculated as the number of phoneme errors divided by the total number of phonemes that

appeared in the testing set. Meanwhile, WER is the error rate at the word level, which is computed as the number of

word errors divided by the total number of words that appeared in the testing set.

The conventional ML-based G2P models commonly achieve acceptable error rates, even for some quite complex

languages using low computational resources. In Rugchatjaroen et al. (2019), two-stage processing of conditional

random fields (CRF) successfully converted a large dataset of Thai words into their pronunciations with WER of

9.94%. In Hlaing and Pa (2019), a joint sequence model produced PER and WER of 1.7% and 10.0%, respectively, for

a large dataset of Myanmar. In Chen (2020), a dynamic finite generalization (DFGA)-based English G2P achieved

PER and WER of 6.86% and 26.49%, respectively, for a dataset of 27,040 words.

Meanwhile, the DL-based G2P models generally produce state-of-the-art performances for most languages in the

world. It is able to generalize the sequence-to-sequence dataset very well. For example, in Hlaing and Pa (2019), a

Transformer-based G2P gives both PER and WER of 1.8% and 10.4%, respectively, for a large Myanmar dataset. In

English, a G2P model, which is based on a convolutional neural network (CNN) and bidirectional long short-term

memory (BiLSTM), obtains PER of 4.81% and WER of 25.13% for the CMUDict dataset (Yolchuyeva et al., 2019).

This model contains two components: an encoder (using CNN with residual connections) and a decoder (using Bi-

LSTM). This model can handle short (less than six characters), medium (six to ten characters), and long (more than ten

characters) words. In other words, it performs well on all range dependencies. Furthermore, it gives more phoneme

errors in the first half of a word than in the second half. The errors in the first half of a word can decrease the accuracy

in the next half. The correct phoneme in the first half of a word does not increase the accuracy in the second one (

Yolchuyeva et al., 2019). Another model based on Transformer achieves similar PER and WER of 5.23% and

22.1% for the CMUDict dataset (Yolchuyeva et al., 2019). Finally, in Liu et al. (2020), a novel agreement on target-

bidirectional RNN produces a competitive PER of 5.00% and the lowest WER of 21.2% for the dataset. It is slightly

better to handle the long words than both CNN-BiLSTM and Transformer .

In some cases, the DL-based G2P can be applied to low-resource languages (Jyothi and Hasegawa-Johnson, 2017).

Besides, it can also be massively used for multilingual G2P models (Peters, 2017). Unfortunately, it requires high

computation resources to train the model for hundreds or even thousands of epochs. Therefore, it should be developed

by considering the size of the available dataset. For low-resource languages, such as Indonesian, it can be built using

either a rule-based or a conventional ML-based approach. In contrast, for high-resource languages, such as English and

European, it is better to be developed using a DL-based approach.

However, a combination of the three approaches is possible to be created. Some specific linguistic rules can be

incorporated into either conventional ML or DL to obtain a better performance. For example, in Sar and Tan (2019),

applying the linguistic knowledge in Khmer improves the performance of weighted finite-state transducer (WFST),

where the PER can be reduced from 23.2% to 11.1%. In Stan (2019), inserting both syllabification and lexical stress

into a sequence-to-sequence Romanian G2P obtains a relatively low PER of up to 0.38%.

Mesanwhile, in the case of the Indonesian language, combining a set of phonotactic rules into a pseudo nearest

neighbor rule (PNNR)-based G2P achieves a low PER of 0.93% for 50 k words (Suyanto et al., 2016). Combining

points of syllabifications (the boundaries between syllables, such as a word ‘con.clu.sion’ has two points of

syllabification that split the word into three syllables: ‘con’, ‘clu’, and ‘sion’) into the model relatively reduces the PER

to be 0.83% (Suyanto, 2019). Unfortunately, it produces many errors that are caused by the ambiguities of some roots

and derivatives that contain four prefixes: ber , meng , peng , and ter . Those prefixes generate many words that

have conversion ambiguity with the roots (Suyanto et al., 2016), such as a grapheme e in a root ‘berang’ (irascible) is

pronounced as /ɛ/, but e in a derivative word ‘berangin’ (windy) is converted into /ə/ because ‘ber’ is a prefix for the

basic word ‘angin’ (wind) that is always pronounced as /bər/; the grapheme e in the root ‘memang’ (indeed) is

pronounced as /ɛ/, but e in the derivative word ‘memangsa’ (to prey) is converted into /ə/ because ‘me’ is a prefix for

the basic word ‘mangsa’ (prey) that is pronounced as /mə/; the grapheme e in the root ‘peroksida’ (peroxide) is

pronounced as /ɛ/, but e in a derivative word ‘perokok’ (smoker) is converted into /ə/ because ‘pe’ is a prefix for the

basic word ‘rokok’ (cigarette) that is always pronounced as /pə/; the grapheme e in a basic word ‘pering’

(tuberculosis) is pronounced as /ɛ/, but e in a derivative word ‘teringat’ (remembered) is converted into /ə/ because

‘ter’ is a prefix for the basic word ‘ingat’ (remember) that is pronounced as /tər/. Those cases of grapheme sequences

are challenging to be solved using both conventional ML and DL.

Moreover, affixes in Indonesian create many long words. A preliminary study on the dataset of 50 k words, which are

collected from the Great Dictionary of the Indonesian Language or Kamus Besar Bahasa Indonesia (KBBI), the third

edition, developed by the Language Center or Pusat Bahasa, shows that the Indonesian has 8.02 characters per word

on average. The dataset contains up to 401 k characters, including a dash symbol, where 385 k of them are graphemes

(26 alphabets): a to z .

Furthermore, Table 1 illustrates eight (of the twenty-six) graphemes and their possible phonemes, which are part of a

detailed observation in Suyanto et al. (2016), that are most challenging in case of the Indonesian G2P. Meanwhile, 18

other graphemes are not listed here since they are easily converted into two possible phonemes using a simple rule or

even into exactly one phoneme. It can be seen in the table that the grapheme a is the most frequently pronounced as /

ɑ/ (up to 54 k) among the three other phonemes: /aɪ/, /a℧/, and /ɑ+ʔ/ that are lower than 1 k. However, there are some

issues regarding to a diphthong, which is a gliding vowel in the articulation of which there is a continuous transition

from one position to another, such as the vowels contained in both words ‘ice’ and ‘out’ that are represented as

diphthongs /aɪ/ and /a℧/, respectively. In Indonesian language, the grapheme a that is followed by a grapheme i ,

which generates a grapheme sequence ai , is not always converted into a diphthong /aɪ/, but it can also be pronounced

as either /a/ or /ɑ+ʔ/, with no certain rule. For instances, ‘baik’ (good), ‘abai’ (ignore), and ‘bait’ (verse) are pronounced

as /bɑik/, /ɑbaɪ/, and /bɑ+ʔit/, respectively. Fortunately, there is a phonotactic constraint that the grapheme sequence ai

 is not possible to be pronounced as a phoneme /a℧/. Those facts show that the grapheme a is quite challenging to

be converted into the correct phoneme.

Table 1

Eight Indonesian graphemes and their possible pronunciations in the International Phonemic Alphabet (IPA), frequencies, as well as

percentages in 50 k words, where the symbol * is a blank (no phoneme), which are adapted from Suyanto et al. (2016).

Grapheme IPA Frequency Percentage

a ɑ 54,859 14.23%

a aɪ 979 0.25%

a a℧ 624 0.16%

a ɑ+ʔ 669 0.17%

e ɛ 9,851 2.56%

e ə 30,554 7.93%

e eɪ 29 0.01%

e ɛ+ʔ 36 0.01%

e ə+ʔ 193 0.05%

g g 6,492 1.68%

g * 11,513 2.99%

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

Meanwhile, a grapheme e is possibly converted into one of the five different phonemes: /ɛ/, /ə/, /eɪ/, /ɛ+ʔ/, and /ə+ʔ/.

It can be more challenging to convert a grapheme e into phoneme/ ɛ/ or /ə/ since they dynamically change with no

particular rule, and their frequencies are so high: up to 10.49% (2.56% and 7.93% each). They come from the

ambiguities of the roots and the derivative words (the words formed from other words or roots, such as conclusion that

is derived from a root conclude) containing the four prefixes: ber , meng , peng , and ter . Hence, in Suyanto et

al. (2016), the conversion of grapheme e into /ɛ/ and /ə/ is reported to contribute many errors.

Next, the grapheme g can be arbitrarily converted into either /g/ or /*/ with no definite rule. The grapheme i can

also be converted at random into either /i/ or /*/ when it is preceded by one of the three graphemes: a , e , and o

with no particular rule. Furthermore, four other graphemes: k , n , o , and u , also give some challenges regarding

the phonotactic constraints.

In this research, a new ML-based Indonesian G2P model called n-gram combined with a stemmer, phonotactic rules,

and the syllabification points (NGTSP) is proposed to solve such problems. One of the state-of-the-art G2P models,

which uses a Transformer described in Yolchuyeva et al. (2019), is also investigated to confirm the NGTSP

performance.

2 Research method

The proposed NGTSP model is shown in Fig. 1. The syllabification point is incorporated into the input grapheme

sequence because it can lower the PER and solves ambiguous conversions of derivative words (Suyanto, 2019). The

data set consisting of 50 k syllabified Indonesian words used in this research is the same as in Suyanto (2019), which is

representative enough since those words are collected from the KBBI. The n-gram tagger, which is a tagger that

implements a hidden Markov model (HMM) that tags an item based on the maximized conditional probability

depending on the fixed context size of previous tags occurrence (in this research, the tagger is tagging graphemes into

phoneme tags), is adapted from the one used in Indonesian syllabification (Ismail and Suyanto, 2020) for two reasons:

i i 26,685 6.92%

i * 1,047 0.27%

i i+ʔ 30 0.01%

k k 21,784 5.65%

k x 217 0.06%

k * 19 0.00%

n n 22,143 5.74%

n ŋ 11,779 3.06%

n ɲ 3,741 0.97%

o ɔ 13,763 3.57%

o ɔɪ 56 0.01%

o ɔ+ʔ 60 0.02%

u u 17,926 4.65%

u * 623 0.16%

u u+ʔ 19 0.00%

1) it gives a low error rate with an efficient process, and 2) it works in a similar way to the G2P task. In a syllabification

task, the n-gram tagger is a binary-class model that just classifies a given sequence of graphemes into two classes:

‘syllabification point’ and ‘not syllabification point’. Meanwhile, in a G2P task, it should be a multi-class model since a

grapheme can be converted into three possible phonemes or more. Hence, some modifications are introduced as

follows. First, the syllabification points are recognized as a character and included in the tag encoding, which is the

tagger state generation that converts grapheme to phoneme tag. In this case, the tag is the corresponding phoneme of

the grapheme. The tags are put in sequences with the order based on their respective appearance in the training data.

The tag sequence is analogous to a state in the Viterbi algorithm used in the tagging process. Then, the state-elimination

procedure, a process of removing a state that contains one or more tags that violate an established rule, is adapted to

enforce the fifteen phonotactic-rules listed in Table 2, which are adapted from Suyanto et al. (2016). In this case, the

rule is based on whether the corresponding phoneme in the tag is an impossible phoneme (IP) or not. Lastly, emission

probability is used in conditional probability calculation because there are phonemes that correspond to more than one

grapheme, such as the phoneme f that can be represented by either the grapheme f or v .

Fig. 1

Phonemicization process of the proposed n -gram-based G2P for [Instruction: Update the caption to be:

Phonemicization process of the proposed n -gram-based G2P for a derivative “men.ca.ir.kan” (to melt).]a root “ca.ir” (liquid) and a

derivative “men.ca.ir.kan” (to melt).

Table 2

Fifteen phonotactic rules, which are adapted from Suyanto et al. (2016) to reduce the potential phonemes, where G is the grapheme, P

is the phoneme list, L1 and R1 is the first contextual grapheme on the left and right, respectively.

Number Rule

1 if G = a and R1 { i , y } then P {/aɪ/}

2 if G = a and R1 { u , w } then P {/a℧ /}

3 if G = e and R1 { i , y } then P {/eɪ/}

4 if G = e and R1 { a , e , i , o , u } then P {/ɛ+ʔ/,/ɛ+ʔ/}

5 if G = g and L1 { n } then P {/*/}

6 if G = i and L1 { a , e , o } then P {/*/}

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

2.1 Stemming

Stemming is the process of reducing an inflected or derived word to its root (base or stem) form, such as the derived

word ‘fishing’ is reduced to its root ‘fish’. In this research, the stemming is carried out using a confix-stripping approach

called CS Stemmer, which is a process of removing a confix (a combination of prefix and suffix in a word) based on

the order of appearance using a root word dictionary (Adriani et al., 2007). This stemming model (stemmer) can

separate the root from derivative words that contain a certain combination of prefix and suffix. For example, the word

“perjalananku” (my journey) come from the root “jalan” (road) with prefix per and two suffixes, an and ku .

However, as the input consists of a syllabified grapheme sequence, the stemmer is modified to consider the

syllabification points.

Certain affixes might be syllabified differently based on the root word. For example, the word “mengambil” (to take)

from the root “ambil” (take) is syllabified as me.ngam.bil , where the word “menggapai” (to reach) from the root

“gapai” (reach) is syllabified as meng.ga.pai . The prefix meng can be syllabified either as me.ng or meng. .

The stemmer needs to consider all possible syllabification for all affixes.

2.2 Tag encoding

Each grapheme from the input can have one or more corresponding phoneme tags. For example, the grapheme

sequence a has four possible phonemes: ɑ aɪ a℧ , and ɑ+ʔ , thus can be encoded to four different tags.

Based on all possible phonemes from each grapheme in the input, states containing phoneme tag sequence with length

k are generated, where k is and n is the order size of the n-gram. As illustrated in Fig. 2, the phoneme tag

sequence in each state is a subset from one of all possible phoneme tag sequence combination from the input word.

Also note that since the input is a syllabified grapheme sequence, the syllabification point is also encoded into its own

tag.

For affixes obtained at the stemming step, the grapheme to phoneme encoding is one-to-one for each grapheme because

there is only one possible phoneme for each grapheme contained in the affixes. For example, the phoneme sequence of

7 if G = i and R1 { a , e , o } then P {/i+ʔ/}

8 if G = k and R1 { h } then P {/x/}

9 if G = n and R1 { c , j , s y } then P {/ɲ/}

10 if G = n and R1 { g , k } then P {/ŋ/}

11 if G = o and R1 { i , y } then P {/ɔɪ/}

12 if G = s and R1 { y } then P {/ʃ/}

13 if G = u and L1 { a } then P {/*/}

14 if G = u and R1 { a , e , o } then P {/u+ʔ/}

15 if G = y and L1 { n , s } then P {/*/}

Fig. 2

Tag encoding for each grapheme from the input word “ca.ir” ([Instruction: (melt) --> (liquid)]melt).

the prefix meng is always məŋ* regardless of the word. Therefore, even though the grapheme e can originally

be encoded to five different phonemes, it will only be encoded to a single phoneme ə .

2.3 Phonotactic rule-based state elimination

Applying phonotactic rule in Indonesian phonemicization can reduce the PER significantly, as shown in Suyanto et al.

(2016). The same phonotactic rule, listed in Table 2, is used by utilizing the state-elimination as described in Ismail and

Suyanto (2020). The state-elimination is modified to recognize impossible phonemes (IP), which are the phonemes that

cannot be the pronunciation of the given grapheme due to the phonotactic rules in a language. For each possible

phoneme of a given grapheme from the input, the phoneme is decided to be IP or not based on the previous grapheme

and the next grapheme. A tag will be discarded if it contains one or more IP. For example, the state a℧,. in Fig. 2

contains the phoneme a℧ . Based on the second phonotactic rule, the phoneme a℧ is an IP because the next

grapheme of the corresponding grapheme a is i , not u .

2.4 n-Gram tagger

To generate the optimum phoneme sequence from the input, the tagger finds the most likely phoneme tag sequence

using conditional probability and the Viterbi algorithm (Ismail and Suyanto, 2020), which is a dynamic programming

algorithm that works efficiently for so many possible sequences of hidden states. For a grapheme sequence

, the tagger will find the optimum phoneme tag sequence that maximizes the conditional

probability of , which is formulated as

 is a probability of phoneme tag sequence , where each tag depends on the k previous tags by using Markov

assumption. It means k is the contextual size (the number of tags taken into account in the probability calculation).

Thus, can be formulated as

For each phoneme tag , the probability of emitting a grapheme is the emission probability . So can

be formulated as

By putting together Eq. (2) and Eq. (3) into Eq. (1), the final formula to find the most likely phoneme tag sequence

of the grapheme sequence is as follows

As explained in Ismail and Suyanto (2020), Generalized Modified Kneser–Ney (GKN) (Shareghi et al., 2016) is used

as the smoothing technique (a method that computes the probability more accurately to deal with data sparsity in the

dataset) to calculate in Eq (4). GKN has discount bound parameter B , which functions to determine

the number of discount parameters for smoothing process.

(1)

(2)

(3)

(4)

Finally, the Viterbi algorithm is exploited to optimize the phoneme tag sequence since it is a dynamic programming

algorithm, which works efficiently to find the highest scoring path by reusing a calculated result in the next calculation

to save time, as illustrated in Fig. 3. Each grapheme from the input represents a single time-state. Each time-state has a

corresponding set of states from the encoding that represents the present grapheme and k previous grapheme. Given a

particular state , the transition to another state is the transition probability which is the conditional probability of

. Each state also has emission probabilities of that represent the probabilities of making certain

observations of a grapheme at that state. The Viterbi algorithm yields the optimum path that has a phoneme tag

sequence with the maximum probability.

3 Results and discussion

All the developed G2P models are evaluated using 50 k Indonesian words based on 5-fold cross-validation, which is a

resampling procedure to create five new datasets commonly used to evaluate machine learning models on a limited

dataset to prevent an accidental result. The original dataset of 50 k words is divided randomly into five subsets or folds

(each contains 10 k unique words). Hence, five new datasets are created. The first new dataset consists of Fold 1 to 4

for training a model and Fold 5 for testing the trained-model; the second one contains Fold 1, 2, 3, and 5 for training

and Fold 4 for testing, and so on until the fifth dataset. The n-gram tagger is firstly evaluated without stemmer and

phonotactic rules. Then, the addition of stemmer and phonotactic rules to the n-gram tagger are separately evaluated.

Finally, the n-gram tagger is evaluated with both stemmer (stemming model) and phonotactic rules (knowledge that

define what sound sequences are possible and what other sound sequences are not possible in a language).

Some experiments are performed to optimize the parameters of the four models. The optimum models are then

compared to the state-of-the-art Transformer-based G2P model using both PER and WER. Next, some detailed

investigations are carried out to see the factors that contribute to the WER. Finally, the processing time is also carefully

investigated.

3.1 Optimization of the parameters

As described in Ismail and Suyanto (2020), the n-gram tagger needs two parameters to be tuned, the n-gram order n

and discount bound B . As illustrated in Fig. 4, the optimum n values for the n-gram tagger (NGT), n-gram tagger with

stemmer (NGTS), n-gram tagger with phonotactic rules (NGTP), and n-gram tagger with stemmer and phonotactic

rules (NGTSP) are all . Fig. 5 shows that the optimum B values for NGT, NGTS, and NGTP are 19, while for

NGTSP is 18. The PER spikes at since the number of unique grams with the continuation count 16 is unusually

low for a lower order 6-gram. The continuation count for lower-order n-grams is used in probability smoothing

calculation. The low unique grams count at a discount bound (B) makes the discount too small and affects the

probability calculation. This anomaly only happens with Fold 1, 2, and 3 causing their PER to be quite higher than

Fold 4 and 5. The B values are limited to 19 in these models. According to the GKN discount formula described in

Shareghi et al. (2016), for the n-gram model needs to have at least one unique gram item with a frequency of 1 to

i. Since for there is no gram item in the model that has a frequency of 20, gives a computational error of

division by zero in the discount value calculation.

Fig. 3

Visualisation for the Viterbi algorithm with the input word “ca.ir” (melt).

3.2 Comparison of the models

The PERs produced by all G2P models using those optimum parameters, and the comparison with the Transformer-

based G2P model, are illustrated in Fig. 6. NGT produces an average PER of 1.21% with a low standard deviation

(STD) of 0.02%. The stemmer in NGTS reduces the PER by 10.06%, giving an average PER of 1.09% with an STD

of 0.03%. Incorporating phonotactic rules in NGTP decreases the average PER to be 0.79% with STD of 0.02%.

Combining stemmer and phonotactic rules in NGTSP gives a relative reduction by up to 35.93%, which reaches the

cheapest average PER of 0.78% with STD of 0.02%. However, this result is not significantly different from that

produced by the NGTP. A detailed investigation finds that the portion of derivative words is just 16% of the testing set,

which can be mostly solved by enforcing the phonotactic rules. Finally, the Transformer-based G2P model produces a

worse performance, where the mean PER is much higher (up to 1.14%) and unstable (with a bigger STD of 0.20%).

Fig. 4

Average PER for NGT, NGTS, NGTP, and NGTSP with for varying n .

Fig. 5

Average PER for NGT, NGTS, NGTP, and NGTSP with for varying B .

Fig. 6

Meanwhile, the WER for all G2P models, and the comparison with the Transformer-based G2P model, are illustrated

in Fig. 7. NGT produces an average WER of 8.77% with a low STD of 0.19%. The stemmer in NGTS reduces the

WER by 10.06%, giving an average WER of 7.88% with an STD of 0.22%. Incorporating phonotactic rules in NGTP

reduces the mean WER to be 5.74% with an STD of 0.20%. Combining stemmer and phonotactic rules in NGTSP

gives a relative decrement by up to 35.70%, which obtains the lowest mean WER of 5.64% with an STD of 0.22%.

Finally, the Transformer-based G2P model shows a worse performance, where the average WER is much higher (up to

8.20%) and unstable (with a much bigger STD of 1.46%).

3.3 Contributions to WER

Furthermore, four detailed investigations are performed regarding the WERs produced by both NGT and NGTSP to

see the impacts of both stemmer and phonotactic rules. Based on 5-fold cross-validation datasets, both NGT and

NGTSP produce 897 and 572 word-errors on average that obtain WERs of 8.77% and 5.64%, respectively, as shown

in Fig. 7. First, the numbers of phoneme errors in a word are evaluated to see their impact on the WERs. The

contributions of three word-categories to the WERs are then investigated. Next, the contributions of the grapheme e

and the others are investigated. Finally, the impacts of the four prefixes to the WERs are also investigated.

The first investigation shows that the WERs produced by both NGT and NGTSP mostly come from the words with

one phoneme error (more than 90%) and the words with two phoneme errors (more than 8%). Meanwhile, a low (less

than 1%) WER comes from the words with three and four phoneme errors. However, NGTSP gives slightly higher

WER from the words with one phoneme error, but it obtains slightly lower WERs from the words with two, three, and

four phoneme errors. These results explain why the relative reduction in WER (35.93%) is slightly smaller than in PER

(35.70%).

The 50 k words in the dataset are categorized as Short, Medium, and Long, which are defined as less than six

characters, between six and ten characters, and more than ten characters (Yolchuyeva et al., 2019), with their

percentages are 19.90%, 62.48%, and 17.62%, respectively. The investigation shows that WERs produced by both

NGT and NGTSP are mostly (62.99% and 63.32%, respectively) come from the medium words only. The exciting

results are given by both short and long words, where NGTSP gives a higher WER (24.02%) than NGT (19.44%) for

the short words, but it reaches much lower WER (12.67%) than NGT (17.57%) for the long words. The more detailed

investigation shows that NGTSP is capable of solving the word errors caused by the phonotactic constraints as well as

the four prefixes (contained in long words) produced by NGT.

A large portion of the WER produced by NGT comes from the grapheme e with the corresponding phoneme ɛ or

ə , which contributes up to 90.31% of the WER. The phoneme ɛ and ə can be used interchangeably without

limitation from any phonotactic rule. Meanwhile, the other graphemes relating to the phonotactic constraints only

contribute to 9.69% of the WER. In NGTSP, the grapheme e contributes up to 96.28% to the WER, but the others

only 3.72%. This result shows that the phonotactic rules, which are incorporated as a state-elimination procedure in

NGTSP, can solve many errors regarding the phonotactic constraints. Besides, the stemmer used in NGTSP also solve

PERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indonesian G2P models.

Fig. 7

WERs produced by NGT, NGTS, NGTP, NGTSP, and Transformer-based Indonesian G2P models.

some errors relating to the grapheme e contained in the four prefixes: ber , meng , peng , and ter . These facts

prove that the combination of both stemmer and phonotactic rules, which are the main contribution of this research, can

significantly reduce the WER produced by the baseline NGT model.

A detailed observation is then performed on the WERs that come from both phonotactic constraints and prefixes. It

shows that only 11.76% (104 of 897 words) of the WER produced by NGT comes from the four prefixes and 88.24%

(793 of 897 words) from the phonotactic constraints in the roots. Meanwhile, the stemmer and phonotactic rules in

NGTSP gives a significant error reduction, where only 1.51% (9 of 572) of the WER come from the four prefixes and

98.49% (563 of 572 words) from the phonotactic constraints in the roots. Based on this fact, it can be implied that the

stemmer is proportionally more effective than the phonotactic rules in reducing the WER. However, since the errors

come from the phonotactic constraints are much more than the prefixes, it can be said that the phonotactic rules used in

NGTSP contribute more WER decrement than the stemmer.

3.4 Processing time

Both training and testing are run on an Intel Core i5-8300H processor and 8 GB of DDR4 with GPU NVidia Geforce

GTX 1050Ti. In the training process, the four G2P models: NGT, NGTS, NGTP, and NGTSP use the same 7-gram

model that takes about 6 s to train 40 k words on average, which is much faster than the Transformer-based G2P model

that needs 72,080 s (20 h), as shown in Table 3. The four n-gram models work linearly in the one-pass process to

develop the 7-gram from the given training set of 40 k words while the Transformer works iteratively for two thousand

epochs. The three models: NGTS, NGTP, and NGTSP, require the same time as NGT since they do not need any

training process to develop the stemmer and/or the phonotactic rules. Instead, both stemmer and phonotactic rules are

implemented using the predefined dictionary and rules that are manually developed by a linguist.

In the testing process, the four n-gram models need more time than in the training one since they should find the best

phoneme combination using the Viterbi algorithm. However, they require various average times to test 10 k words in

each fold. NGT is the slowest one (128 s for 10 k words) since it searches in all phoneme combinations. NGTS is

slightly faster (98 s for 10 k words) as the number of phoneme combinations is reduced by stemming some derivative

words. NGTP is the fastest one (16 s for 10 k words) as the number of phoneme combinations are significantly

decreased by the phonotactic rules. Meanwhile, NGTSP requires a little more time (20 s for 10 k words) because of the

dictionary look-up time by the stemmer. However, it is much faster than the Transformer (37 s for 10 k words).

Hence, the results conclude that the proposed NGTSP is much more efficient than the Transformer-based G2P in both

training and testing processes. During the implementation and the parameter tuning, it is also much simpler than the

Transformer.

4 Conclusion

Table 3

Average processing time in both training and testing processes of NGT, NGTS, NGTP, NGTSP, and Transformer-based G2P models for

the 5-fold cross-validation datasets, where the training time is calculated for 40 k words and the testing time is for 10 k words.

Model Training time (seconds) Testing time (seconds)

NGT 6 128

NGTS 6 98

NGTP 6 16

NGTSP 6 20

Transformer 72,080 37

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

The Indonesian G2P model, based on n-gram tagger combined with stemmer and phonotactic rules (NGTSP), is

successfully developed. The 5-fold cross-validation using 50 k words shows that the stemmer can decrease the average

PER by 10.06% (from 1.21% to 1.09%). Meanwhile, the phonotactic rules reduce the average PER to be 0.79%.

Combining both stemmer and phonotactic rules is capable of giving a relative decrement by up to 35.93% and 35.70%,

which obtains the lowest mean PER and WER of 0.78% and 5.64% (STD of 0.01% and 0.04%), respectively. This

result is much lower and more stable than the Transformer-based G2P model, one of the state-of-the-art deep learning

models, which produces the average PER and WER of 1.14% and 8.20% with STD of 0.20% and 1.46%, respectively.

The detailed investigations prove that both stemmer and phonotactic rules can reduce word errors caused by the

prefixes and the phonotactic violations. The stemmer slightly increases, but the phonotactic rules drastically reduces, the

testing time. In the future, a more efficient stemmer can be exploited to improve the NGTSP model.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

i The corrections made in this section will be reviewed and approved by a journal production editor. The newly

added/removed references and its citations will be reordered and rearranged by the production team.

Achanta, S., Pandey, A., Gangashetty, S.V., 2016. Analysis of sequence to sequence neural networks on

grapheme to phoneme conversion task. International Joint Conference on Neural Networks (IJCNN) 2016,

2798–2804. doi:10.1109/IJCNN.2016.7727552.

Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S.M., Williams, H.E., 2007. Stemming Indonesia: a confix-

stripping approach. ACM Trans. Asian Language Inform. Process. 6 (4), 1–33. doi:10.1145/1316457.1316459.

Al-Daradkah, B., Al-Diri, B., 2015. Automatic grapheme-to-phoneme conversion of Arabic text. Science and

Information Conference (SAI) 2015, 468–473. doi:10.1109/SAI.2015.7237184.

Chen, H., 2020. English phonetic synthesis based on dfga g2p conversion algorithm, Vol. 1533, Institute of

Physics Publishing.https://doi.org/10.1088/1742-6596/1533/3/032031.

Emiru, E.D., Li, Y., Xiong, S., Fesseha, A., 2019. Speech recognition system based on deep neural network

acoustic modeling for low resourced language-Amharic. In: ACM International Conference Proceeding Series,

Association for Computing Machinery, pp. 141–145.

Hadj Ali, I., Mnasri, Z., Lachiri, Z., 2020. Dnn-based grapheme-to-phoneme conversion for arabic text-to-

speech synthesis. Int. J. Speech Technol. 23 (3), 569–584. doi:10.1007/s10772-020-09750-7.

Hlaing, A., Pa, W., 2019. Sequence-to-sequence models for grapheme to phoneme conversion on large

myanmar pronunciation dictionary, Institute of Electrical and Electronics Engineers Inc..https://doi.org/10.1109/

O-COCOSDA46868.2019.9041225.

Ismail, R.N., Suyanto, S., 2020. Indonesian Graphemic Syllabification Using n -Gram Tagger with State-

Elimination. In: 2020 8th International Conference on Information and Communication Technology (ICoICT).ht

tps://doi.org/10.1109/ICoICT49345.2020.9166368.

Jyothi, P., Hasegawa-Johnson, M., 2017. Low-resource grapheme-to-phoneme conversion using recurrent neural

networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

doi:10.1109/ICASSP.2017.7953114.

Liu, L., Finch, A., Utiyama, M., Sumita, E., 2020. Agreement on target-bidirectional recurrent neural networks

for sequence-to-sequence learning. J. Artif. Intell. Res. 67, 581–606. doi:10.1613/JAIR.1.12008.

doi:10.1088/1742-6596/1533/3/032031
doi:10.1109/O-COCOSDA46868.2019.9041225
doi:10.1109/ICoICT49345.2020.9166368

Footnotes

Article Footnotes

Patil, T., Magdum, D., Suman, M., 2019. Grapheme to phoneme conversion rules for hindi. J. Adv. Res. Dyn.

Control Syst. 11 (5 Special Issue), 1757–1761.

Peters, B., 2017. Massively Multilingual Neural Grapheme-to-Phoneme Conversion, in: the First Workshop on

Building Linguistically Generalizable NLP Systems, pp. 19–26.https://doi.org/10.18653/v1/W17-5403.

Rugchatjaroen, A., Saychum, S., Kongyoung, S., Chootrakool, P., Kasuriya, S., Wutiwiwatchai, C., 2019.

Efficient two-stage processing for joint sequence model-based thai grapheme-to-phoneme conversion. Speech

Commun. 106, 105–111 cited By 3 doi:10.1016/j.specom.2018.12.003.

Sar, V., Tan, T.-P., 2019. Applying linguistic g2p knowledge on a statistical grapheme-to-phoneme conversion in

khmer. Elsevier B.V. 161, 415–423. doi:10.1016/j.procs.2019.11.140.

Shareghi, E., Cohn, T., Haffari, G., 2016. Richer Interpolative Smoothing Based on Modified Kneser-Ney

Language Modeling 944–949. doi:10.18653/v1/d16-1094.

Stan, A., 2019. Input encoding for sequence-to-sequence learning of romanian grapheme-to-phoneme

conversion, Institute of Electrical and Electronics Engineers Inc.https://doi.org/10.1109/SPED.2019.8906639.

Suyanto, S., 2019. Incorporating syllabification points into a model of grapheme-to-phoneme conversion. Int. J.

Speech Technol. 22 (2), 459–470. doi:10.1007/s10772-019-09619-4https://doi.org/10.1007/s10772-019-09619-

4.

Suyanto, Hartati, S., Harjoko, A., 2016. Modified grapheme encoding and phonemic rule to improve PNNR-

based indonesian G2P. Int. J. Adv. Comput. Sci. Appl. 7 (3).https://doi.org/10.14569/IJACSA.2016.070358.

Suyanto, S., Hartati, S., Harjoko, A., Compernolle, D.V., 2016. Indonesian syllabification using a pseudo

nearest neighbour rule and phonotactic knowledge. Speech Commun. 85, 109–118.

doi:10.1016/j.specom.2016.10.009https://doi.org/10.1016/j.specom.2016.10.009.

Švec, J., Psutka, J.V., Trmal, J., Smfdl, L., Ircing, P., Sedmidubsky, J., 2018. On the use of grapheme models for

searching in large spoken archives. In: 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). pp. 6259–6263. doi:10.1109/ICASSP.2018.8461774.

Yolchuyeva, S., Nmeth, G., Gyires-Tth, B., 2019. Grapheme-to-phoneme conversion with convolutional neural

networks, Applied Sciences (Switzerland) 9 (6), cited By 1.https://doi.org/10.3390/app9061143.

Yolchuyeva, S., Nmeth, G., Gyires-Tth, B., 2019. Transformer based grapheme-to-phoneme conversion, vol.

2019-September, Int. Speech Commun. Assoc., pp. 2095–2099.https://doi.org/10.21437/Interspeech.2019-1954.

[☆] This research is fully funded by the Ministry of Research and Technology/National Research and

Innovation Agency (Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional or

KemenRistek/BRIN) with the scheme of World Class Research (WCR).

Queries and Answers

Q1

Query: Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is

NOT correct and your article belongs to a Special Issue/Collection please contact r.john@elsevier.com immediately prior to

returning your corrections.

Answer: Yes, our article is registered as a regular item and is being processed for inclusion in a regular issue of the journal.

doi:10.18653/v1/W17-5403
doi:10.1109/SPED.2019.8906639
doi:10.14569/IJACSA.2016.070358
doi:10.3390/app9061143
doi:10.21437/Interspeech.2019-1954

Q2

Query: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please

confirm if they have been identified correctly.

Answer: Yes, all author names have been identified correctly.

Q3

Query: Please note that the reference style has been changed from a Numbered style to a Name-Date style as per the journal

specifications.

Answer: OK.

	Evidence of correspondence B18 01
	B.18-Evidences of correspondences 01
	B.18-Evidences of correspondences 02
	B.18-Evidences of correspondences 03
	JKSUCIS-D-20-01239_R1 Bukti Submit Revisi 2020-12-20-1
	JKSUCIS-S-20-01858-2-25

	Evidence of correspondence B18 02
	B.18-Evidences of correspondences 04
	Evidence of correspondence B18 03
	B.18-Evidences of correspondences 05
	B.18-Evidences of correspondences 07
	Evidence of correspondence B18 04
	B.18-Evidences of correspondences 08
	Evidence of correspondence B18 05
	B.18-Evidences of correspondences 09 Proof
	07 POOFREAD - JKSUCI_951_session_report-1
	07 POOFREAD - JKSUCI_951_session_report-2-14

