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Abstract

In this paper, an evolutionary Rao algorithm (ERA) is proposed to enhance

three state-of-the-art metaheuristic Rao algorithms (Rao-1, Rao-2, Rao-3), by

introducing two new schemes. Firstly, the population is split into two sub-

populations based on their qualities: high and low, with a particular portion

that can be simply tuned depending on the given problem. The high-quality

sub-population searches for an optimum solution in an exploitative manner using

a movement scheme used in the Rao-3 algorithm. Meanwhile, the low-quality

one does in an explorative fashion using a new random walk. Secondly, two

evolutionary operators: crossover and mutation, are exploited to make the pro-

posed ERA faster in the exploitative and explorative searching, respectively.

Here, both operators are implemented using a random scheme with the com-

mon probabilistic values so that they do not create any additional parameters.

Examination of the twenty-three benchmark functions: seven unimodal, six

multimodal, and ten fixed-dimension multimodal shows that the proposed ERA

outperforms the three original Rao algorithms. A detailed investigation indi-

cates that both introduced schemes work very well to make the ERA evolves

faster in an exploitative manner, which is created by a high portion of high-

quality individuals and the crossover operator, and avoids trapping on the local

optimum solutions in an explorative manner, which is created by a high portion

of low-quality individuals and the mutation operator.

Keywords: evolutionary Rao algorithm, evolutionary operators, exploitative,

explorative, two populations
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1. Introduction

The metaheuristic optimization algorithms that can be categorized into two

groups: evolutionary algorithms (EAs) and swarm intelligence (SI) algorithms

[1]. EAs are inspired by both evolution and natural selection, such as Genetic

Algorithm (GA) [2], [3], Evolution Strategies (ES) [4], [5], and Differential Evo-5

lution (DE) [6]. Meanwhile, SI algorithms are inspired by a natural swarm, such

as Particle Swarm Optimization (PSO) [7], [8], Firefly Algorithm (FA) [9], [10],

Grey Wolf Optimizer (GWO) [11], [12], and Ant Lion Optimization (ALO) [13].

GA is one of the most popular EAs introduced in the 1970s [14]. It uses

evolution and natural selection applied to its population over generations. A10

population consists of some individual chromosomes, each representing a can-

didate solution. The new chromosomes in a generation are either some of the

best chromosomes (elitism) in the previous generation or are generated by some

genetic operations, such as crossover and mutation. The crossover takes two

chromosomes and produces one offspring inherited part of chromosome values15

from each of the parents. In contrast, the mutation is randomly changing some

values in a chromosome. The crossover and mutation are responsible for ex-

ploration, while elitism directs toward exploitation. GA has an ability to avoid

being trapped in the local optima. It is also applicable to non-differentiable

and high dimensionality functions. On the other hand, it converges slowly be-20

cause of the highly-random operations that do not give a clear direction to find

the global optimum solution quickly. However, various improvement schemes

have been proposed to overcome the drawback, such as a concept of human-like

constrained-mating [15] that creates a more explorative search strategy.

In 1995, the Particle Swarm Optimisation (PSO) was introduced by Kennedy25

and Elberhart [16]. The movements of the particles in searching for a global

optimum mimics the behavior of bird flocking and fish schooling. PSO is one

of the most popular SI algorithms since it has three advantages: easy to im-

plement, few parameters that are simply tuned, and effective in searching the

global optimum solution since it has a clearer direction than GA. However, it30
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tends to prematurely converge on a local optimum in optimizing a multimodal

function since it uses a static finite leader and group based on a linear move-

ment. Therefore, some strategies are developed to tackle the issue, such as a

learning structure [17] to decouple exploration and exploitation and a dynamic

updating of the inertia weights [18] to control the convergence.35

In 2009, the Firefly Algorithm (FA) was proposed [19]. In FA, each firefly

will be attracted to all other brighter (better) fireflies, not only to the global

best like in PSO. In addition, the attractiveness of a brighter firefly is decreased

proportioned to the distance between the two fireflies due to the light absorp-

tion. Since the fireflies will usually be attracted more to their brighter neighbor40

than the further away brightest individual, the exploration is more effective

than PSO. In other words, FA uses a dynamic leader and group based on a

nonlinear movement. Moreover, FA can be turned into PSO by setting the light

absorption parameter such that every firefly can be seen clearly by all other

fireflies. Consequently, all fireflies will be attracted to the brightest one (global45

best). In some experiments, FA shows better performance than PSO due to two

critical characteristics [20]: 1) FA usually divide its population into a subgroup,

2) By not having an explicit global best, FA can avoid premature convergence.

To enhance the performance of FA, several improved schemes are created, such

as a courtship learning framework [21], where the population is divided into50

sub-populations: female and male, to improve the convergence speed and so-

lution accuracy; and a best neighbor guided strategy [22], where each firefly

is attracted to the best firefly among some randomly chosen neighbors to de-

crease the firefly oscillations in every attraction-induced migration stage as well

as increase the probability of the guidance a new better direction.55

In 2014, Grey Wolf Optimization (GWO) was introduced by Mirjalili [23].

It is inspired by both the social hierarchy and hunting methods of grey wolves

(GWs). The hierarchy of GWs has four groups: alpha, beta, delta, and omegas.

GWO selects the three fittest wolves (best solutions) as the alpha, beta, and

delta while the rest as omegas. The hunting of GWs is guided by the three fittest60

wolves. All omegas follow them. It has four phases, which are mathematically
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modeled into four behaviors: Harassing Prey, Hunting, Attacking, and Search-

ing. They make GWO has a high exploitative searching strategy. It quickly

converges to an optimum solution for unimodal functions. However, it suffers

from multimodal functions since it has a low explorative movement. Therefore,65

some variants of GWO are developed by incorporating a differential evolution

and elimination mechanism [24], combining a simulated annealing [25], adding

a refraction learning operator [26], or introducing a dimension learning-based

hunting movement strategy [27] that uses a different approach to construct a

neighborhood for each wolf to enhances the balance between local and global70

search and maintains diversity.

In 2015, Ant Lion Optimizer (ALO) was proposed by Mirjalili [28]. ALO

mimics the interaction between antlions and ants in the trap, where ants move

over the search space and antlions hunt them and become fitter using traps.

A new random walk is introduced to model the ant’s movement as they move75

stochastically in nature to find some food. It has high exploitation and con-

vergence speed because of both adaptive boundary shrinking mechanism and

elitism. It also high exploration due to the random walk and roulette wheel

selection mechanisms. However, although it has few parameters, some schemes

and movements make ALO seems too-complicated. Hence, some versions of80

ALO are created by modifying, hybridizing, and providing an ability so solve a

multi-objective problem [13].

In 2020, the metaphor-less optimization methods called Rao algorithms were

proposed by Ravipudi Venkata Rao [29]. The Rao Algorithms use both best

and worst solutions in each iteration, as well as the random interactions among85

the candidate solutions, to quickly find an optimum solution. They need two

standard parameters: population size and a maximum number of evaluations,

which are easy to adjust. They drop many parameters used in the previous

metaphor-based algorithms, such as cohesion, intensity, probability, and other

commonly challenging parameters to tune carefully.90

The Rao algorithms have three variants: Rao-1, Rao-2, and Rao-3, which
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respectively use three different equations as follow

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − Xj,worst,i) (1)

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − Xj,worst,i)+

r2,j,i(|Xj,k,i or Xj,l,i| − |Xj,l,i or Xj,k,i|),
(2)

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − |Xj,worst,i|)+

r2,j,i(|Xj,k,i or Xj,l,i| − (Xj,l,i or Xj,k,i)),
(3)

where Xj,best,i represents the best candidate as value of variable j, and Xj,worst,i

represents the worst candidate as value of variable j, both throughout the i-th

iteration. X ′
j,k,i is the updated value after the equation, and both r1,j,i as95

well as r2,j,i are randomly generated in [0,1] for the j-th variable throughout

the i-th iteration. In the term |Xj,k,i or Xj,l,i|, the candidate solution k is

compared to another candidate l, which is randomly selected from the available

candidates in the population. The term |Xj,k,i| is selected if k is fitter than l.

Otherwise, the |Xj,l,i| is chosen. The same rule is applied to the second the100

term (Xj,l,i or Xj,k,i).

All formulas used in the three Rao algorithms are similar to GWO, which

makes them more exploitative than explorative. Using both best and worst

solutions, they converge to an optimum solution for unimodal functions more

quickly than GWO. However, with low explorative movement, they can be worse105

for multimodal functions. As described in [29], Rao is easy to get stuck in

multimodal functions. Rao-3 gives a better solution only in the Schwefel function

from the six benchmark multimodal-functions and much worse for the other five

benchmark multimodal-functions.

Therefore, in this research, an evolutionary Rao algorithm (ERA) is pro-110

posed to enhance the three original Rao algorithms by introducing two addi-

tional schemes. Firstly, the population is split into two sub-populations based
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on their qualities: high and low, with a particular portion depending on the

given problem. The high-quality sub-population searches for an optimum so-

lution in an exploitative manner using a movement scheme used in the Rao-3115

algorithm. Meanwhile, the low-quality one does in an explorative fashion using

a new random walk introduced in this research. This scheme is similar to the

courtship learning framework in the Enhanced FA [21], where the population is

also divided into two sub-populations: female and male, but ERA uses a pre-

defined specific portion. Secondly, two evolutionary operators: crossover and120

mutation, are exploited to make the proposed ERA faster in the exploitative and

explorative searching, respectively. Here, both operators are implemented using

a random scheme with the common probabilistic values so that they do not cre-

ate any additional parameters. The ERA is then examined using twenty-three

benchmark functions: seven unimodal, six multimodal, and ten fixed-dimension125

multimodal, and compared to the three original Rao algorithms.

2. Proposed Evolutionary Rao Algorithm

The pseudo-code of ERA is illustrated in Algorithm 1. In the initial phase,

define the population size p and the portion s, and initialize the population

of p individuals. Next, in the second phase, an evolution is performed until a130

stopping condition is reached. In each generation, five steps are carried out.

Firstly, the quality of each individual is calculated and their quality-ranks are

then sorted in the descending mode. Secondly, the population is split into

two sub-populations: high-quality (HQ) and low-quality (LQ), with the defined

portion s, and both the best individual Xbest and the worst individual Xworst135

are selected. Thirdly, each HQ individual is moved to follow the Xbest using Eq.

(3). Fourthly, the fittest HQ individual is selected as the BestHF, and then one

of the two evolutionary operators is chosen: crossover (exploitative) or mutation

(explorative), to move the Xbest. Finally, each LQ individual is moved using a

new random walk.140
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Algorithm 1: Evolutionary Rao Algorithm
Result: Xbest as the optimum solution

Set p as the number of individuals (population size);

Set s as the portion of high-quality (HQ) individuals;

Initialization of p individuals;

while StoppingCondition = false do
for each individual, calculate its quality and then sort the

quality-ranks in the descending mode;

Select the fittest individual as the Xbest;

Select the most fit individuals with the defined portion s as the HQ

and the rests as the low-quality (LQ) individuals;

Select the lowest-quality individual as the Xworst;

for each HQ individual, move it to follow the Xbest using Eq. (3);

Select the fittest HQ individual as the BestHF;

if rand > 0.5 then
Offsprings = Crossover(BestHF, Xbest);

Replacement(BestHF, Xbest, Offsprings);

else
Offspring = Mutation(Xbest);

Replacement(Xbest, Offspring);

end

for each LQ individual move it to follow or distract a randomly

selected HQ individual based on Eq. (8);

end

2.1. Two sub-populations

The population of p candidate solutions (individuals) is split into two sub-

populations based on their qualities: high and low, with a proper portion based

on the given problem. The high-quality (HQ) sub-population searches for an

optimum solution in an exploitative manner using the same movement scheme145

as in the Rao-3 algorithm. Meanwhile, the low-quality (LQ) one does in an
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explorative fashion using a new random walk introduced in this research. Hence,

this scheme creates a new parameter s : the portion of the high and the low-

quality individuals in the population, which is in the interval (0, 1) and easy to

adjust. Hypothetically, it should be high (more than 0.5) to make ERA more150

exploitative and faster to solve the unimodal functions. In contrast, it must

be low (less than 0.5) to make ERA more explorative to solve the multimodal

functions.

The population of p individuals is split into the high-quality sub-population

of h individuals and the low-quality sub-population of l individuals, which are155

calculated as

h = b(p − 1) × sc, (4)

l = (p − 1) − h, (5)

where s is the portion of HQ individuals in the population.

However, both Eq. (4) and Eq. (5) may produce zero for either h or l

if the portion s is too-small or too-high. Hence, an enforcement procedure is

implemented to ensure that a too-small s makes the HQ sub-population consists160

of at least two individuals and a too-big s also makes the LQ sub-population

contains at least two individuals.

2.2. Crossover

The crossover is implemented using a whole arithmetic crossover, which is

defined as165

X ′ = α ∙ X + (1 − α) ∙ Y

Y ′ = α ∙ Y + (1 − α) ∙ X
(6)

where α is a constant in the interval (0, 1), which is randomly generated to be

not equal to 0.5 to prevent generating the same two offsprings (new individuals);
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if α = 0.5, then both offsprings X ′ and Y ′ are the same as the average of both

current individuals X and Y .

2.3. Mutation170

The mutation is simply implemented using a creep mutation by adding a

small value (positive or negative) to each mutated element. The small value is

randomly generated using a Gaussian probability that is symmetric, distributed

on 0, and has a high probability for the smaller values. The creep mutation is

defined as175

〈x1, x2, ...xn〉 → 〈x′
1, x

′
2, ...x

′
n〉, (7)

where x1, x2, ...xn ∈ [Li, Ui], Li and Ui are the lower and upper bounds of the

interval of the ith element.

2.4. Random walk

To provide an ability to search for an optimum solution in an explorative

manner, each LQ individual is moved using a new random walk formulated as180

X ′
m,LQ,i = Xm,LQ,i + r1,m,i(Xm,HQ,n − Xm,LQ,i) (8)

where Xm,LQ,i and Xm,HQ,n is the LQ individual i and the HQ individual n

(randomly selected from the high-quality sub-population), respectively, and m

is the randomly selected dimension; not all dimensions is used here to make this

random walk more explorative.

3. Results and Discussion185

In this research, twenty-three benchmark functions: seven unimodal, six

multimodal, and ten fixed-dimension multimodal functions as described in [29],

are used to investigate both exploitation and exploration abilities of the pro-

posed ERA. Table 1 illustrates the benchmark functions with their identities

9



(ID), names, types, dimensions, ranges, and global optimum values fmin. Seven190

benchmark functions, with ID = 1 to 7, are unimodal to examine the exploita-

tion ability. Next, six benchmark functions, ID = 8 to 13, are multimodal, with

many local optima that increase as the dimension increases, to evaluate the

exploration ability. Finally, ten functions, ID = 14 to 23, are fixed-dimension

multimodal to investigate the exploration ability in the case of fixed-dimension195

optimization problems.

3.1. Parameter tuning

Here, both parameters of the proposed ERA: population p and portion s,

are independently tuned for the twenty three benchmark functions. For each

function, ninety experiments are performed using combination of ten values200

of p = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and nine values of s = 0.1,

0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, which can be defined as pairs of (10, 0.1), (10,

0.2), ..., (100, 0.9). For each experiment, the maximum number of function

evaluations is set to 30,000 with 10 runs to reduce the coincidence. Here, only

three experimental results of the representative benchmark functions are shown205

and discussed: unimodal (Sphere, ID = 1), multimodal (Schwefel, ID = 8), and

fixed-dimension multimodal (Shekel 7, ID = 22) since the results of 20 other

benchmark functions are similar to those three results.

Figure 1 illustrates the experimental results for the problem of searching

a minimum solution to a unimodal function of Sphere (ID = 1), where the210

vertical axis uses log(mean solution) to ensure the bar chart clearly shows all

results from the ninety experiments. It can be seen that a too-small (10) or a big

population p (30 to 100) makes the ERA produces a bad solution. The bigger

the p the worse the solution. A small portion s (0.5 or less) also yields a poor

solution. The smaller the s the worse the solution. Hence, the combination of215

a too-big p and a too-small s is not recommended. The optimum combination

is reached on p = 20 and s = 0.8. This result proves that a big portion of

high-quality individuals in the small population makes the proposed ERA more

exploitative and faster to find the optimum solution.
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Table 1: Twenty three benchmark functions: seven unimodal, six multimodal, and ten fixed-

dimension multimodal (FDM) functions

ID Function Name Type Dimension Range fmin

1 Sphere Unimodal 30 [-100, 100] 0

2 Schwefel 2.22 Unimodal 30 [-100, 100] 0

3 Schwefel 1.2 Unimodal 30 [-100, 100] 0

4 Schwefel 2.21 Unimodal 30 [-100, 100] 0

5 Rosenbrock Unimodal 30 [-30, 30] 0

6 Step Unimodal 30 [-100, 100] 0

7 Quartic Unimodal 30 [-1.28, 1.28] 0

8 Schwefel Multimodal 30 [-500, 500] 0

9 Rastrigin Multimodal 30 [-5.12, 5.12] 0

10 Ackley Multimodal 30 [-32, 32] 0

11 Griewank Multimodal 30 [-600, 600] 0

12 Penalized Multimodal 30 [-50, 50] 0

13 Penalized2 Multimodal 30 [-50, 50] 0

14 Foxholes FDM 2 [-65, 65] 0.998

15 Kowalik FDM 4 [-5, 5] 0.0003

16 Six Hump Camel FDM 2 [-5, 5] -1.0316

17 Branin FDM 2 [-5, 5] 0.398

18 GoldStein-Price FDM 2 [-2, 2] 3

19 Hartman 3 FDM 3 [0, 1] -3.86

20 Hartman 6 FDM 6 [0, 1] -3.32

21 Shekel 5 FDM 4 [0, 10] -10.1532

22 Shekel 7 FDM 4 [0, 10] -10.4029

23 Shekel 10 FDM 4 [0, 10] -10.5364

Next, Figure 2 illustrates the ninety experimental results for the problem220

of minimizing a multimodal function of Schwefel (ID = 8). It informs that a

too-small (10 and 20) or a too-big population p (40 to 100) produces a bad
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Figure 1: Parameter tuning for a unimodal benchmark function of Sphere (ID = 1)

solution. The bigger the p the worse the solution. A too-big portion s also

yields a poor solution. The bigger the s the worse the solution. Therefore, the

combination of a too-big p and a too-big s is not recommended. The optimum225

combination is reached on p = 30 and s = 0.2. This result proves that a small

portion of high-quality individuals in the small population makes the proposed

ERA more explorative and faster to find the optimum solution.

Figure 2: Parameter tuning for a multimodal benchmark function of Schwefel (ID = 8)

Finally, Figure 3 illustrates the ninety experimental results for the problem

of minimizing a fixed-dimension multimodal function of Shekel 7 (ID = 22). It230
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shows that a too-small population p (10 to 30) produces a bad solution. The

smaller the p the worse the solution. A too-big portion s also yields a poor

solution. The bigger the s the worse the solution. Hence, the combination of

a too-small p and a too-big s is not recommended. The optimum combination

is reached on p = 100 and s = 0.1, 0.2, or 0.3. This result informs that a small235

portion of high-quality individuals in the big population make the proposed ERA

balance in the explorative and exploitative searching for an optimum solution.

Figure 3: Parameter tuning for a fixed-dimension multimodal benchmark function of Shekel

7 (ID = 22)

3.2. Comparison to the three original Rao algorithms

The proposed ERA is then examined and compared with the three original

Rao algorithms: Rao-1, Rao-2, and Rao-3, to search the minimum solutions to240

the twenty-three benchmark functions listed in Table 1. For each benchmark

function, the maximum number of function evaluations is set to 30,000 with 100

runs to reduce the coincidence of the four algorithms. The random seeds of the

100 initial populations (for each benchmark function) are the same when the al-

gorithms use the same population size p to get the fairness. Otherwise, they are245

different. The Matlab source-code as well as the optimum population sizes used

in the Rao-1, Rao-2, and Rao-3 algorithms refer to [29]. Meanwhile, the popu-

lation size and portion used in ERA are based on the results of the parameter
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tuning described in subsection 3.1. Table 2 illustrates the examination results

based on five metrics: Best solution, Worst solution, Mean solution, standard250

deviation (STD), and mean function evaluations (MFE), and two optimum pa-

rameters of population size and the portion used in each algorithm. The bold

text shows the best result while the underscored text informs the second-best

(similar) result.

Based on the metric of Worst, Mean, and STD, for the seven unimodal255

functions, ID = 1 to 7, the proposed ERA mostly outperforms the three Rao

algorithms. It achieves much lower mean solutions for the five functions with ID

= 1, 2, 3, 4, and 7. It is slightly worse than Rao-1 for the Rosenbrock function

(ID = 5), where it gives a mean solution of 31.24156062 while Rao-1 reaches

30.85414709, but it is better than Rao-2 and Rao-3. Unfortunately, it is much260

worse than Rao-1 for the Step function (ID = 6), where it produces a mean

solution of 2.531040325 while Rao-1 obtains 2.32704E-20, but it is better than

Rao-2 and Rao-3.

Next, the investigation on the six multimodal functions, ID = 8 to 13, informs

that the proposed ERA also mostly outperforms the three Rao algorithms, where265

it achieves lower mean solutions for the four functions with ID = 8, 9, 10, and 13.

It is slightly worse than Rao-1 for the Griewank benchmark function (ID = 11),

where it gives a mean solution of 0.025376504 while Rao-1 reaches 0.011749089,

but it is better than Rao-2 and Rao-3. It is also slightly worse than Rao-3 for

the Penalized benchmark function (ID = 12), where it produces a mean solution270

of 1.130589565 while Rao-3 obtains 1.099778271, but it is better than Rao-1 and

Rao-2.

Finally, the investigation on the metrics of Worst, Mean, and STD for the

ten fixed-dimension unimodal functions, ID = 14 to 23, shows that the proposed

ERA mostly outperforms the three Rao algorithms, where it achieves lower mean275

solutions for the six benchmark functions with ID = 15, 16, 19, 20, 21 and 22. It

is slightly worse than Rao-2 for the benchmark function of GoldStein-Price (ID

= 18), where it gives a mean solution of 3.000302252 while Rao-1 reaches 3, but

it is better than Rao-1 and Rao-3. It is also slightly worse than Rao-3 and Rao-2

14



for the benchmark function of Shekel 10 (ID = 23), where it produces a mean280

solution of -10.11445995 while Rao-3 and Rao-2 obtain the lower solutions of

-10.3742565 and -10.35898843, respectively. Interestingly, based on the metric

of Best, it gives a better solution (-10.53644209) than Rao-1 (-10.53644036),

Rao-2 (-10.53643886), and Rao-3 (-10.53643734).

Table 2 Comparison of Rao-1, Rao-2, Rao-3, and ERA for 23 benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 ERA

1 Best 7.626E-25 2.12776E-16 1.92673E-51 8.9808E-63

Worst 1.25685E-19 1.6654E-09 2.5956E-40 9.88121E-53

Mean 4.99854E-21 4.9006E-11 9.2457E-42 2.07426E-54

STD 1.73159E-20 2.02461E-10 3.77511E-41 1.12408E-53

MFE 30000 30000 30000 30000

Population 10 10 10 20

Portion 0.9

2 Best 3.80459E-16 0.003292845 6.32167E-20 1.92812E-32

Worst 3.99559E-11 10.00763655 1.49865E-13 1.10184E-26

Mean 1.26205E-12 0.121315726 2.08066E-15 3.26013E-28

STD 4.26637E-12 0.998697292 1.59554E-14 1.5349E-27

MFE 30000 30000 30000 30000

Population 10 20 20 20

Portion 0.9

3 Best 2.09545E-24 4.20776E-16 8.83731E-34 2.02601E-60

Worst 2.51646E-17 20000 3.1512E-26 3.73135E-51

Mean 2.99381E-19 600 4.48321E-28 9.35662E-53

STD 2.51501E-18 2777.979791 3.19147E-27 5.15425E-52

MFE 30000 30000 30000 30000

Population 10 10 20 20

Portion 0.9

4 Best 0.504236253 4.187211667 0.003290339 6.78005E-06

Worst 5.098884898 41.66275728 0.873189273 0.02903511

Mean 2.31254633 16.9361541 0.120113549 0.001111361

STD 1.051753402 7.94162623 0.173710577 0.003242235

MFE 30000 30000 30000 30000

Population 30 20 20 60

Portion 0.9

5 Best 0.3084995487 0.0004289297068 0.007647765593 0.03847405641
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Table 2 Comparison of Rao-1, Rao-2, Rao-3, and ERA for 23 benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 ERA

Worst 184.9937562 3037.560956 542.6851381 167.9000192

Mean 34.84929283 70.49915266 43.36710061 36.48401936

STD 31.99209523 424.8235345 62.41267725 40.6703416

MFE 30000 30000 30000 30000

Population 20 10 20 100

Portion 0.5

6 Best 3.95396E-25 1.62207E-12 1.950933713 1.254112212

Worst 1.93674E-18 10100.25 4.760217938 5.935674551

Mean 2.32704E-20 101.0025014 2.978025617 2.531040325

STD 1.94378E-19 1010.025 0.488527412 0.807383928

MFE 30000 30000 30000 30000

Population 10 10 30 50

Portion 0.5

7 Best 0.016777689 0.028244196 0.00313442 0.002960331

Worst 0.160355414 0.263789812 0.041554724 0.038043669

Mean 0.073677235 0.098848861 0.01601691 0.012131037

STD 0.029293298 0.044897583 0.008654207 0.005647329

MFE 30000 30000 30000 30000

Population 20 20 30 50

Portion 0.5

8 Best -10255.35528 -12016.76892 -11641.65114 -12455.21563

Worst -4304.560919 -5496.871369 -4671.432666 -11099.67265

Mean -8582.260521 -8673.104501 -9456.600916 -12015.67076

STD 1581.559748 1705.804215 1663.472251 302.2659241

MFE 30000 30000 30000 30000

Population 10 10 20 30

Portion 0.2

9 Best 42.78320419 112.8286649 24.87398785 26.03169827

Worst 280.7041958 304.7799026 202.3310204 51.67285374

Mean 99.00834905 192.2113213 100.610812 37.22129318

STD 43.05401847 43.39244946 40.37929687 5.767324167

MFE 30000 30000 30000 30000

Population 10 10 10 50

Portion 0.5

10 Best 0.072508061 0.009364202 2.93746E-07 2.42556E-09

Worst 19.96299615 19.9621694 3.21062E-05 1.00445E-07
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Table 2 Comparison of Rao-1, Rao-2, Rao-3, and ERA for 23 benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 ERA

Mean 2.56273516 5.14019373 4.68148E-06 2.29034E-08

STD 5.850043995 8.346895116 5.33867E-06 1.78893E-08

MFE 30000 30000 30000 29970

Population 40 20 50 90

Portion 0.9

11 Best 1.59317E-13 8.88178E-16 0 0

Worst 0.053866937 0.889568918 0.383999931 0.199815973

Mean 0.011749089 0.09161055 0.030794015 0.025376504

STD 0.012163204 0.187689477 0.050516984 0.03595075

MFE 30000 30000 27620.4 26624.8

Population 20 10 20 40

Portion 0.8

12 Best 6.1519E-12 0.203655788 0.287826023 0.148850139

Worst 15.59917497 27.66035428 7.208965188 5.597209637

Mean 1.497987926 7.166688919 1.099778271 1.130589565

STD 3.347109796 5.313811456 1.041309443 1.011324944

MFE 30000 30000 30000 30000

Population 20 20 50 100

Portion 0.9

13 Best 1.38482E-06 9.78909E-13 5.77121E-14 3.40019E-12

Worst 10.06545402 42.72956693 0.397445015 0.098882649

Mean 0.456150842 1.51287029 0.020958335 0.007193028

STD 1.638895617 5.048569679 0.052615311 0.017410352

MFE 30000 30000 30000 30000

Population 30 10 50 80

Portion 0.8

14 Best 0.998 0.998 0.998 0.998

Worst 0.998 4.950491232 1.000298841 0.998

Mean 0.998 1.07706363 0.998153122 0.998

STD 0 0.556134459 0.000394433 0

MFE 4144.8 6682.2 18503 10516.8

Population 20 20 50 80

Portion 0.8

15 Best 0.026536947 0.002623873 0.003833459 0.001984456

Worst 0.061428871 0.055006212 0.038766825 0.036204266

Mean 0.042651343 0.033239833 0.027682962 0.009483111
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Table 2 Comparison of Rao-1, Rao-2, Rao-3, and ERA for 23 benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 ERA

STD 0.009650198 0.011027106 0.013129211 0.00705608

MFE 30000 30000 30000 30000

Population 100 20 30 10

Portion 0.7

16 Best -1.031628397 -1.03162845 -1.03162827 -1.031628398

Worst -1.031596371 -0.215463824 -0.215460511 -1.031600618

Mean -1.031613381 -0.990805801 -1.02344958 -1.031615353

STD 9.76826E-06 0.178771753 0.081615058 8.44531E-06

MFE 2529.7 2338.2 1879.05 484.6

Population 10 5 5 10

Portion 0.7

17 Best 0.397887358 0.397887358 0.397887358 0.397887358

Worst 0.397887358 0.397887358 0.397887358 0.397887358

Mean 0.397887358 0.397887358 0.397887358 0.397887358

STD 1.06003E-15 1.06003E-15 1.06003E-15 1.06003E-15

MFE 30000 30000 30000 30000

Population 10 10 10 10

Portion 0.8

18 Best 3 3 3.000000356 3

Worst 84 3 84 3.024296865

Mean 3.81 3 4.620069482 3.000302252

STD 8.1 0 11.39711885 0.002478975

MFE 1447.4 7089.2 30000 30000

Population 10 20 10 20

Portion 0.9

19 Best -3.862560942 -3.862520503 -3.862708631 -3.862719148

Worst -1.000816864 -3.860005413 -3.860025992 -3.8600793

Mean -3.669444166 -3.861179 -3.861199721 -3.861212482

STD 0.594599578 0.00071381 0.000765404 0.00076365

MFE 4311.65 366.8 506.7 403.6

Population 5 20 30 20

Portion 0.7

20 Best -3.321897003 -3.321588453 -3.321846058 -3.32196047

Worst -3.173734332 -1.709685086 -3.203161918 -3.20311344

Mean -3.254373419 -3.240408817 -3.266467027 -3.281656468

STD 0.056445682 0.182074904 0.058723738 0.055372259
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Table 2 Comparison of Rao-1, Rao-2, Rao-3, and ERA for 23 benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 ERA

MFE 19015.2 13126.3 14504.7 10539

Population 20 10 30 10

Portion 0.2

21 Best -10.15319786 -10.15319944 -10.15319871 -10.15319966

Worst -2.625619 -2.630471668 -2.630471668 -5.057296338

Mean -6.859391671 -7.257911109 -7.372318656 -10.07891808

STD 2.052147876 3.052405481 2.82458379 0.513608708

MFE 28134.2 16867.2 21307.2 17631

Population 20 20 30 100

Portion 0.2

22 Best -10.40291414 -10.40291397 -10.40291287 -10.40291383

Worst -2.738399204 -2.74956211 -4.803725772 -10.07051811

Mean -8.047697928 -9.811363404 -9.372551375 -10.38018796

STD 2.624281948 1.517964991 1.188005718 0.064089416

MFE 22891 14785.5 26734 19980

Population 20 50 100 100

Portion 0.2

23 Best -10.53644036 -10.53643886 -10.53643734 -10.53644209

Worst -2.790290505 -7.947019775 -4.49818821 -4.069876498

Mean -9.57173758 -10.35898843 -10.3742565 -10.11445995

STD 1.937147518 0.4798249682 0.8449893664 1.448143483

MFE 14279.4 17459 8475 16547

Population 20 100 50 100

Portion 0.1

285

Based on the results in Table 2, the performance of the proposed ERA in

terms of the number of functions where it gives better, equal, and worse solutions

than the original Rao algorithms is summarized in Table 3. For the metrics of

Worst, Mean, and STD, the proposed ERA produces better solutions for fifteen

benchmark functions with ID: 1, 2, 3, 4, 7, 8, 9, 10, 13, 15, 16, 19, 20, 21,290

and 22. It obtains equal solutions for two benchmark functions with ID: 14

and 17. It produces the worse solutions for six benchmark functions, where it
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obtains slightly worse results for five functions with ID: 5, 11, 12, 18, and 23,

but it gives a much worse solution only for one function (ID = 6). These results

prove that the proposed ERA is better and more stable than the original Rao295

algorithms to solve three kinds of benchmark functions: unimodal, multimodal,

and fixed-dimension multimodal.

For the metric of Best, the ERA achieves the better solutions for twelve

benchmark functions with ID: 1, 2, 3, 4, 7, 8, 10, 13, 15, 19, 20, and 23. It

obtains equal results for four functions with ID: 11, 14, 17, and 18. It gives300

the worse solutions for seven functions with ID: 5, 6, 9, 12, 16, 21, and 22.

Meanwhile, for the metric of MFE, all the four algorithms give the same results

for thirteen functions and similar achievements for other functions. The ERA

is better than three Rao algorithms for the four benchmark functions with ID:

10, 11, 16, and 20. Especially, for the function ID = 16, it significantly gives a305

lower MFE than the others.

Table 3: Performance of the proposed ERA in terms of the number of functions where it gives

better, equal, and worse solutions than the original Rao algorithms (Rao-1, Rao-2, and Rao-3)

Metric Better Equal Worse

Best 12 4 7

Worst 15 2 6

Mean 15 2 6

STD 15 2 6

MFE 4 13 6

3.3. Detailed investigation on unimodal functions

A detailed investigation of the seven benchmark unimodal functions, ID = 1

to 7, is discussed by illustrating some convergence analysis of the proposed ERA

and the original Rao algorithms. For each benchmark function, the maximum310

number of function evaluations is set to 30,000 with 100 runs to reduce the

coincidence of the four algorithms. Figure 4 shows the evolution of all the algo-
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rithms until convergence to the optimum solution for the benchmark function

of Sphere (ID = 1). The horizontal axis is the generation, which is calculated

as 30,000 function evaluations divided by the population size p. The random315

seeds of the 100 initial populations are the same for the algorithms that use the

same optimum population size p. Hence, in this case, the three original Rao

algorithms use the same initial population since they have the same optimum

p = 10. In contrast, the ERA uses a different initial population because it has

the optimum p = 20. Due to the different optimum p for each algorithm, then320

the evolution is illustrated using the different step size of generation to get the

fairness. Here, the proposed ERA uses a step size of 1 while the three original

Rao algorithms use a step size of 2 so that all the algorithms show the same

generations of 1 to 1,500. It can be seen in Figure 4 that the ERA is the fastest

algorithm, where it can converge at the beginning of the evolution. This result325

also applies to four other unimodal functions ID = 2, 3, 4, and 7.

Figure 5 shows the evolution of all the algorithms for the benchmark function

of Schwefel 2.21 (ID = 4). It can be seen that the ERA is much faster than

the others, where it converges on the generation of 250 (half of the evolution).

At the end of evolution, it gives the lowest mean solution of 0.001111361 while330

Rao-1, Rao-2, and Rao-3 produce worse solutions of 2.31254633, 16.9361541,

and 0.120113549, respectively. This result informs that the ERA is quite fast

to converge to the global solution because of its exploitative ability created by

the big population of high-quality individuals and the crossover applied to the

fittest individual XBest.335

Next, the convergence analysis is performed for the two unimodal functions

with ID = 5 and 6, where ERA gives the worse solutions. Figure 6 shows that at

the beginning of evolution (generation 1 to 50), the ERA converges more slowly

than both Rao-3 and Rao-1 in minimizing the Rosenbrock function (ID = 5).

Interestingly, it overtakes the Rao-3 that is getting stuck at generation 240 and340

then keeps evolves to converge to the solution that very close to the Rao-1 at the

last generation (300), as illustrated in Figure 7. This result indicates that the

ERA is not easy to be trapped on the local solution because of its explorative
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Figure 4: Convergence analysis for a unimodal benchmark function of Sphere (ID = 1)
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Figure 5: Convergence analysis for a unimodal benchmark function of Schwefel 2.21 (ID = 4)

ability created by the big sub-population of the low-quality individuals that do

a new random walk and also the mutation operator performed to the fittest345

individual XBest. A similar result applies to the Step function (ID = 6).
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Figure 6: Convergence analysis for a unimodal benchmark function of Rosenbrock (ID = 5)
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Figure 7: Convergence analysis for a unimodal benchmark function of Rosenbrock (ID = 5)

for the generation of 151 to 300
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3.4. Detailed investigation on multimodal functions

Next, a detailed investigation of the seven benchmark multimodal functions,

ID = 8 to 13, is illustrated by some convergence analysis of the proposed ERA

and the three original Rao algorithms. Figure 8 shows the evolution of all the350

algorithms for the benchmark function of Schwefel (ID = 8). The ERA performs

the best evolution and converges to a much better solution than the others. It

seems to evolve more slowly than the Rao-2 algorithm at the beginning of the

evolution (generation 1 to 100), but it evolves much faster at generation 101

to 1,000 and finally converges to a much better solution than the others. This355

result also applies to three other multimodal functions ID = 9, 10, and 13.
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Figure 8: Convergence analysis for a multimodal benchmark function of Schwefel (ID = 8)

Next, the convergence analysis is given for a multimodal Griewank function

with ID = 11, where ERA gives a worse solution. Figure 9 shows that the ERA

converges much faster than the others at the beginning of evolution: generation

1 to 50. It works slower than the Rao-1 on generation 375 (half evolution) and360

converges to the slightly worse solution on the last generation 750, as illustrated

in Figure 10. This result implies that the ERA can be trapped on the local
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solution when it is too-exploitative created by the too-small sub-population of

the low-quality individuals.
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Figure 9: Convergence analysis for a multimodal benchmark function of Griewank (ID = 11)
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Figure 10: Convergence analysis for a multimodal benchmark function of Griewank (ID = 11)

for the generation 376 to 750
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3.5. Detailed investigation on fixed-dimension multimodal functions365

Finally, a detailed investigation of ten benchmark fixed-dimension unimodal

functions, ID = 14 to 23, is also illustrated by some convergence analysis of the

proposed ERA and the original Rao algorithms. Figure 11 shows the evolution

of all the algorithms for the benchmark function of Shekel 5 (ID = 21). The

ERA performs the best evolution and converges to a much better solution than370

the others. It seems to evolve more slowly than the Rao-1, Rao-2, and Rao-3

algorithms at the beginning of the evolution (generation 1 to 30), but it evolves

much faster at generation 31 to 50 and keeps evolving until finally converges to

a much better solution than the others. This result also applies to seven other

multimodal functions with ID = 14, 15, 16, 17, 19, 20, and 22.375
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Figure 11: Convergence analysis for a fixed-dimension multimodal benchmark function of

Shekel 5 (ID = 21)

Furthermore, the convergence analysis is carried out for a fixed-dimension

multimodal Shekel function with ID = 23, where ERA gives a slightly worse

solution. Figure 12 shows that at the beginning of the evolution, generation 1

to 125, the ERA evolves similarly to both Rao-3 and Rao-2 algorithms. It is

getting stuck at generation 126 and converges to a slightly worse solution at380
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the last generation 300. This result shows that the ERA can be trapped on the

local solution when it works in a high-explorative manner created by the big

sub-population of the low-quality individuals.

0 50 100 150 200 250 300

Generation

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

M
e

a
n

 o
f t

h
e

 b
e

st
-s

o
-f

a
r s

o
lu

tio
n

 fo
r 

1
0

0
 r

u
n

s

Benchmark function ID = 23

Rao-1
Rao-2
Rao-3
ERA

Figure 12: Convergence analysis for a fixed-dimension multimodal benchmark function of

Shekel 10 (ID = 23)

4. Conclusion

The proposed evolutionary Rao algorithm (ERA) works very well based on385

two additional schemes: splitting the population into two sub-populations based

on their qualities: high and low, with a proper portion, and exploiting two evo-

lutionary operators: crossover and mutation. Evaluation of the twenty-three

benchmark functions shows that it outperforms three original Rao algorithms,

where it gives better mean solutions for fifteen functions: five of the seven390

unimodal functions, four of the six multimodal functions, and six of the ten

fixed-dimension multimodal functions. It obtains the same average solutions for

two fixed-dimension multimodal functions. It just gives slightly worse solutions

for six functions: two of the seven unimodal functions, two of the six multimodal
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functions, and two of the ten fixed-dimension multimodal functions. A detailed395

investigation informs that both introduced schemes work well as they are de-

signed to make the ERA keeps evolving until the end of evolution and avoid

being trapped on the local optimum solutions. In the future, a comprehensive

examination as well as an application development can be performed to see its

performance in handling some real world problems.400
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Authors' Responses to Reviewers' Comments 
 
 

Dear Reviewers, 

 
Thank you very much for your comments and suggestions that helped us to prepare a hopefully better 
version of our manuscript. Below are our responses and corrections to the comments and suggestions, 
where the blue texts are our responses, the purple ones are the original text in the manuscript, the red 
strikethrough ones are the text “to be deleted”, and the green ones are the text “to be inserted”. 

 

----------------------------------------------------------------------------------------------------------------- 
Reviewer #1 
----------------------------------------------------------------------------------------------------------------- 
The authors present an Evolutionary Rao Algorithm (ERA) obtained by improving a metaheuristic 
Rao algorithm. Inspired by a Firefly Algorithm, the first improvement consists in splitting the 
population into a high-quality population and a low-quality population according to a proportion 
defined by the user. The proportion of split controls the degree of exploitation and exploration of the 
algorithm. Inspired by Genetic Algorithms, the second improvement consists in applying a crossover 
and a mutation operator to the best individual and the best pretender (obtained by moving the high-
quality population towards the best individual). 

The article is well written, references are up-to-date, the motivations for the improvements are well 
justified and the experiments are sound (extensive hyper-parameter grid search, high number of 
experiment repetitions, high number of benchmark functions). The key points of the proposed 
algorithm are the few number of hyper-parameters and its performance on multi-modal benchmark 
functions. Unfortunately, the proposed algorithm is not applied on a real-world problem and it is not 
compared to the Firefly Algorithm it is inspired by. 

I suggest minor modifications to further improve the manuscript: 

1) The proposed algorithm should be applied on a real-world problem. European Space Agency 
provides Global Trajectory Optimization Problems implemented in Matlab. 

>> The proposed ERA is now applied on the Global Trajectory Optimization Problems. 

 
2) A comparison with the Enhanced Firefly Algorithm [21] you are inspired by should be considered. 
The Matlab code for the Enhanced Firefly Algorithm is available on-line. 

>> The proposed ERA is now compared with the enhanced firefly algorithm (FA) [21], which is 
called FA with courtship learning (FA-CL). 

 
3) In Section 2 (line 138 page 6) you states that crossover favors exploitation while mutation favors 
exploration but in Section 1 (line 17 page 2) you states that crossover and mutation are responsible 
for exploration. Can you please be clearer? 

>> Section 1 (line 17 page 2) is now revised: The crossover and mutation are responsible for 
exploration, while elitism directs toward exploitation. The mutation is responsible for exploration, 
while crossover and elitism direct toward exploitation. 

Response to Reviewers



 
4) Equation (7) in Section 2.3. (page 9) does not provide any information about the mutation operator 
employed. 

>> Equation (7) is now equipped with the mutation operator provided in Equation (8). 
 
5) The difference between multi-modal functions (ID=8 to 13) and fixed-dimension multi-modal 
functions (ID=14 to 23) is not clear. Is the difference only about decision space dimensions? In this 
case, it could be convenient to rename "fixed-dimension multi-modal functions" into "low-dimension 
multi-modal functions". 

>> All the terms of fixed-dimension multi-modal functions are now revised into low-dimension 
multimodal functions. 
 
6) In Section 3.1 it is stated that the results of 20 other benchmark functions are similar to those of 
functions 1, 8 and 22 (line 208, page 10). According to Table 2, it seems not to be the case. Indeed, 
for function ID=8 population size is 30 and proportion is 0.2 while for function ID=10 population 
size is 90 and proportion is 0.9. 

>> Here, only three experimental results of the representative benchmark functions are shown and 
discussed: unimodal (Sphere, ID = 1), multimodal (Schwefel, ID = 8), and low-dimension multimodal 
(Shekel 7, ID = 22) since the results of 20 other benchmark functions are similar to those three results 
to see the behaviors of both parameters p and s in optimizing the three types of benchmark functions. 
The common parameter value of p is finally selected as a fixed-optimum value for all the benchmark 
functions. Meanwhile, the portion s is dynamically updated during the evolution process using a 
fitness-based adaptation scheme. 
 
7) According to Figure 2, a low population size seems to be better to treat the 30-d Schwefel problem. 
According to Figure 3, a high population size seems to be better to treat the Shekel 4-d problem. I 
found counterintuitive that a lower population size is preferred to treat a more difficult problem (my 
first guess is a 30-d problem is more difficult than a 4-d problem). Could you please give a hypothesis 
to explain this observation? 

>> Although its dimension is lower than the 30-D Schwefel, the 4-D Shekel has a broad flat area that 
makes some individuals in ERA may have the same fitness, which is hard to split them into the high- 
and the low-qualities (leading to a stagnation). Hence, a bigger population size is needed to escape 
from stagnation. The 2-D visualizations of the 23 classic benchmark functions is now provided in 
Figure 1 to give a better explanation for the hypothesis. 
 
8) Typos and sentences that could be rephrased: 

- They make GWO has a high exploitative searching strategy. (line 63, page 4) 
- for each wolf to enhances the balance (line 70, page 4) 
- an ability so solve (line 79, page 4) 
- the best candidate as value of variable j (line 93, page 5) 
- X_{m,LQ,i} and X_{m,HQ,n} is the (line 181, page 9) 
- not all dimensions is used (line 183, page 9) 
- a small portion [...] make (line 236, page 13) 
- fixed-dimension unimodal functions (line 274, page 14) 
- keeps evolves (line 341, page 21) 
- to converge to the solution that very close to the Rao-1 (line 341, page 21) 
- fixed-dimension unimodal (line 366, page 26) 
- keeps evolving until finally converges (line 378, page 26) 



 

>> The typos and sentences are now rephrased as follow: 

- It has four phases, which are mathematically modeled into four behaviors: Harassing Prey, 
Hunting, Attacking, and Searching. They make GWO has a high exploitative searching 
strategy. that create a high exploitative searching strategy. 

- for each wolf to enhances enhance the balance (line 70, page 4) 
- an ability so to solve (line 79, page 4) 
- the best candidate as the value of variable j (line 93, page 5) 
- X_{m,LQ,i} and X_{m,HQ,n} is are the (line 181, page 9) 
- not all dimensions is are used (line 183, page 9) 
- a small portion [...] make makes (line 236, page 13) 
- fixed-dimension unimodal low-dimension multimodal functions (line 274, page 14) 
- keeps evolves evolving (line 341, page 21) 
- to converge to the solution that very close closes to the Rao-1 (line 341, page 21) 
- fixed-dimension unimodal low-dimension multimodal (line 366, page 26) 
- keeps evolving until finally converges converging (line 378, page 26) 

 
----------------------------------------------------------------------------------------------------------------- 
Reviewer #2 
----------------------------------------------------------------------------------------------------------------- 
The paper proposed an improved RAO algorithm called Evolutionary RAO Algorithm (ERA). ERA 
differs from RAO-1, RAO-2 and RAO-3 in that it has two additional schemes: (a) the first scheme is 
a population splitting mechanism which divides the main population into two sub-populations based 
on their fitness. (b) A crossover and mutation operators were also used in the proposed method. 
Moreover, a random walk was also used. 

The performance of ERA has been validated by means of numerical experiments on well-known 
benchmark functions. Although the manuscript is well-organized and well-written, the following 
aspects of the paper needs major revisions: 

Regarding the test functions: 

The used test functions, indeed, are very well-known and widely used benchmark functions in the 
literature. However, the following points should be handled: 

1) The authors should justify the choice of benchmark functions. Majority of the used test functions 
have symmetric search space boundaries, and in most of them the optimal point x* is in (0,0, …,0). 
Other test functions should be considered to investigate (a) the bias of the proposed algorithm toward 
the center of the search space, and (b) the effect of shift and rotation of the test function on the 
behavior of the proposed method. (c) the effect of noise in the fitness function. 

>> The proposed ERA is now evaluated using the CEC-C06 2019 Benchmarks ‘‘The 100-Digit 
Challenge’’. 
 
Regarding the simulation results and performance comparison: 

2) It is not clear how the authors validated the difference between numerical results of counterpart 
algorithms. Authors are asked to conduct a non-parametric statistical analysis, i.e. Wilcoxon rank 
sum test, on the results and report the p-values. 

>> Validations using Friedman mean rank (FRM) and Wilcoxon rank sum test (WRST) on the results 
are now provided and the p-values are now reported. 



 
3) When reporting the results of the proposed algorithm, the authors conducted a considerable amount 
of experiments to find the sub-optimal values for p and s parameters. Although the proposed 
parameters are beneficial to the performance of the ERA, the used approach to find their best values 
for each benchmark function is not fair. Indeed, the process of finding the best values for the two 
parameters is a huge computational burden which simply neglected when judging about the 
superiority of the proposed method. Therefore, the authors should use p and s with the same values 
for all benchmark functions. 

>> ERA and all the competitors are now evaluated using the same parameter setting of p and s for all 
the benchmark-functions to get fairness. Besides, they are compared on their best performances. 
Based on the previous research and a preliminary experiment performed in this research, the optimum 
values of p for Rao-1, Rao-2, and FA-CL are 20 while for Rao-3 and ERA are 40 and 60, respectively. 
A fitness-based adaptation scheme is now introduced in ERA to increase or decrease the portion s 
dynamically based on the best-so-far fitness during the evolution. If two consecutive best-so-far 
fitness shows an improvement, then the portion s is decreased to make ERA more exploitative. In 
contrast, if two consecutive best-so-far fitness shows a stagnation, then the portion s is increased to 
make ERA more explorative. Besides, both mutation-radius a and mutation-rate b are also 
dynamically updated using the same scheme. Hence, the Taguchi method is unnecessary to fine tune 
the parameters. 
 
4) The computational complexity of the proposed ERA should be calculated and compared with those 
of the other algorithms. 

>> The computational complexity of the proposed ERA is now provided in Subsection 2.6. 
 

----------------------------------------------------------------------------------------------------------------- 
Reviewer #3 
----------------------------------------------------------------------------------------------------------------- 
Manuscript No.: JOCSCI-D-21-00030 

Manuscript title: Evolutionary Rao Algorithm 

The above manuscript proposed Evolutionary Rao Algorithm and its application for solving 
unconstrained optimization problems. Several unconstrained benchmarks are considered. The 
manuscript lacks sufficient contribution and novelty and based on the following major comments, the 
manuscript is not ready for publication due the following comments: 

1) The concept of sub-population will add another user parameter, and there will be question here, 
what is the optimal number of sub-population number? Regarding cross-over and mutation rates, both 
are considered as user parameters which are important factors. Therefore, user parameters are not 
considered as population and s which were fine tuned. 

>> ERA is now equipped with a fitness-based adaptation scheme to increase or decrease the portion 
s dynamically based on the best-so-far fitness during the evolution. If two consecutive best-so-far 
fitness shows an improvement, then the portion s is decreased to make ERA more exploitative. In 
contrast, if two consecutive best-so-far fitness shows a stagnation, then the portion s is increased to 
make ERA more explorative. Besides, both mutation-radius a and mutation-rate b are also 
dynamically updated using the same scheme. 
 
2) The benchmarks used are simple and very standard version of benchmarks. Those are not shifted, 
rotated and hybrid. They are in their simple format. It is strongly suggested to examine their improved 
method over CEC benchmark series. 



>> The proposed ERA is now evaluated using the CEC-C06 2019 Benchmarks ‘‘The 100-Digit
Challenge’’.

3) Talking about sensitivity analysis, the reviewer is not convinced with the methodology applied in
the manuscript. It is mostly based on try and error various combinations of user parameters. It is
strongly suggested to use well-known method such as Taguchi approach to fine tune initial
parameters.

>> ERA is now run using the same p and s for all the benchmark functions. A fitness-based adaptation
scheme is introduced to increase or decrease the portion s dynamically based on the best-so-far fitness
during the evolution. If two consecutive best-so-far fitness shows an improvement, then the portion
s is decreased to make ERA more exploitative. In contrast, if two consecutive best-so-far fitness
shows a stagnation, then the portion s is increased to make ERA more explorative. Besides, both
mutation-radius a and mutation-rate b are also dynamically updated using the same scheme. Hence,
the Taguchi method is unnecessary to fine tune the parameters.

4) The manuscript only focuses on unconstrained benchmarks which is not acceptable at this moment.
Ability of handling constrained benchmarks should be validated.

>> The ability of the proposed ERA in handling the constrained Global Trajectory Optimization
Problems (GTOC) from European Space Agency is now validated.

5) Comparison pool is not sufficient and fair. It is intended to include more recent and competitive
optimizers not only some variants of RAO. We wish to developed, improved an optimizer to make it
better than the existing ones. This is the main purpose and target of improving/developing/hybridizing
algorithms.

>> The proposed ERA is now compared with a recent optimizer called Firefly Algorithm with
courtship learning (FA-CL) [21].

6) Concerning presenting simulation results, there are only statistical results such as mean, SD, worst,
and best. There is no report of statistical tests such as T-test and Friedman. How can be sure about
the significance of the obtained results?

>> Validations using Friedman mean rank (FRM) and Wilcoxon rank sum test (WRST) on the results
are now provided and the p-values are now reported.

7) Future research is missing. Conclusions instead of conclusion.

>> The future research is now provided on two last sentences in the Conclusions: However, in the
future, a new advanced adaptation scheme to update the population size dynamically throughout the
evolutionary process as well as a better mutation scheme will be created to improve the performance
of ERA. Besides, it will be comprehensively examined using more challenging benchmarks.
>> Conclusion Conclusions.

8) Please double proofread the entire manuscript. It can be seen some typo-mistakes and grammatical
errors in the manuscript.

>> The entire manuscript is now double proofread. The typo-mistakes and grammatical errors are
now corrected.



• An evolutionary Rao algorithm (ERA) is proposed to enhance the three state-of-the-art
metaheuristic Rao algorithms by introducing two new schemes

• The population is split into two subpopulations: high- and low-quality individuals to
control searching strategy

• Two evolutionary operators: crossover and mutation operators are incorporated to give
the exploitation and exploration strategies

• A fitness-based adaptation procedure is introduced to dynamically tune the three
sensitive parameters to balance the exploitation and exploration

• Comprehensive examinations are performed using 38 benchmarks: 23 classic, 10 CEC-
C06 2019, and 5 global trajectory optimization problems
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Abstract

This paper proposes an evolutionary Rao algorithm (ERA) to enhance three

state-of-the-art metaheuristic Rao algorithms (Rao-1, Rao-2, Rao-3) by in-

troducing two new schemes. Firstly, the population is split into two sub-

populations based on their qualities: high and low, with a particular portion.

The high-quality sub-population searches for an optimum solution in an ex-

ploitative manner using a movement scheme used in the Rao-3 algorithm. Mean-

while, the low-quality one does in an explorative fashion using a new random

walk. Secondly, two evolutionary operators: crossover and mutation, are incor-

porated to provide both exploitation and exploration strategies. A fitness-based

adaptation is introduced to dynamically tune the three parameters: the portion

of high-quality individuals, mutation radius, and mutation rate throughout the

evolution, based on the improvement of best-so-far fitness. In contrast, the

crossover is implemented using a standard random scheme. Comprehensive ex-

aminations using 38 benchmarks: twenty-three classic functions, ten CEC-C06

2019 benchmarks, and five global trajectory optimization problems show that

the proposed ERA generally outperforms the four competitors: Rao-1, Rao-2,

Rao-3, and firefly algorithm with courtship learning (FA-CL). Detailed inves-
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tigations indicate that both proposed schemes work very well to make ERA

evolves in an exploitative manner, which is created by a high portion of high-

quality individuals and the crossover operator, and avoids being trapped on

the local optimum solutions in an explorative manner, which is generated by a

high portion of low-quality individuals and the mutation operator. Finally, the

adaptation scheme effectively controls the exploitation-exploration balance by

dynamically tuning the portion, mutation radius, and mutation rate throughout

the evolution process.

Keywords: evolutionary Rao algorithm, exploitation-exploration balance,

fitness-based adaptation scheme, random walk, two subpopulations

1. Introduction

The metaheuristic optimization algorithms that can be categorized into two

groups: evolutionary algorithms (EAs) and swarm intelligence (SI) algorithms

[1]. EAs are inspired by both evolution and natural selection, such as Genetic

Algorithm (GA) [2], [3], Evolution Strategies (ES) [4], [5], and Differential Evo-5

lution (DE) [6]. Meanwhile, SI algorithms are inspired by a natural swarm, such

as Particle Swarm Optimization (PSO) [7], [8], Firefly Algorithm (FA) [9], [10],

Grey Wolf Optimizer (GWO) [11], [12], and Ant Lion Optimization (ALO) [13].

GA is one of the most popular EAs introduced in the 1970s [14]. It uses both

evolution and natural selection that are applied to its population over genera-10

tions. A population consists of some individual chromosomes, each representing

a candidate solution. The new chromosomes in a generation are either some

of the best chromosomes (elitism) in the previous generation or generated by

genetic operations, such as crossover and mutation. The crossover takes two

chromosomes and produces one offspring inherited part of chromosome values15

from each parent. In contrast, the mutation is randomly changing some values

in a chromosome. The mutation is responsible for exploration, while crossover

and elitism direct toward exploitation. GA can avoid being trapped in the lo-

cal optima. It is also applicable to non-differentiable and high dimensionality

2
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functions. On the other hand, it converges slowly because of the highly-random20

operations that do not give a clear direction to find the global optimum solution

quickly. However, various improvement schemes have been proposed to over-

come the drawback, such as a concept of human-like constrained-mating [15]

that creates a more explorative search strategy.

In 1995, the Particle Swarm Optimisation (PSO) was introduced by Kennedy25

and Elberhart [16]. The movements of the particles in searching for a global

optimum mimics the behavior of bird flocking and fish schooling. PSO is one

of the most popular SI algorithms since it has three advantages: easy to im-

plement, few parameters that are simply tuned, and effective in searching the

global optimum solution since it has a clearer direction than GA. However, it30

tends to prematurely converge on a local optimum in optimizing a multimodal

function since it uses a static finite leader and group based on a linear move-

ment. Therefore, some strategies are developed to tackle the issue, such as a

learning structure [17] to decouple exploration and exploitation and a dynamic

updating of the inertia weights [18] to control the convergence.35

In 2009, the Firefly Algorithm (FA) was proposed [19]. In FA, each firefly

will be attracted to all other brighter (better) fireflies, not only to the global best

like in PSO. Also, the brighter firefly’s attractiveness is decreased proportioned

to the distance between the two fireflies due to the light absorption. Since the

fireflies will usually be attracted more to their brighter neighbor than the further40

away brightest individual, the exploration is more effective than PSO. In other

words, FA uses a dynamic leader and group based on a nonlinear movement.

Moreover, FA can be turned into PSO by setting the light absorption parameter

such that every firefly can be seen clearly by all other fireflies. Consequently, all

fireflies will be attracted to the brightest one (global best). In some experiments,45

FA shows better performance than PSO due to two critical characteristics [20]:

1) FA usually divides its population into a subgroup, 2) By not having an explicit

global best, FA can avoid premature convergence. Several improved schemes are

created to enhance the FA performance, such as a courtship learning framework

[21], where the population is divided into subpopulations: female and male, to50

3



improve the convergence speed and solution accuracy. Another improvement

scheme is the best neighbor guided strategy [22], where each firefly is attracted

to the best firefly among some randomly chosen neighbors to decrease the firefly

oscillations in every attraction-induced migration stage as well as increase the

probability of the guidance a new better direction.55

In 2014, Grey Wolf Optimization (GWO) was introduced by Mirjalili [23].

It is inspired by both the social hierarchy and hunting methods of grey wolves

(GWs). The hierarchy of GWs has four groups: alpha, beta, delta, and omegas.

GWO selects the three fittest wolves (best solutions) as the alpha, beta, and

delta, while the rest as omegas. The hunting process of GWs is guided by60

the three fittest wolves. All omegas follow them. It has four phases, which

are mathematically modeled into four behaviors: Harassing Prey, Hunting, At-

tacking, and Searching, that create a high exploitative searching strategy. It

quickly converges to an optimum solution for unimodal functions. However,

it suffers from multimodal functions since it has a low explorative movement.65

Therefore, some variants of GWO are developed by incorporating various mecha-

nisms/operators, such as differential evolution with elimination mechanism [24],

simulated annealing [25], or refraction learning operator [26]. GWO can also

be improved using a dimension learning-based hunting movement strategy [27],

which uses a different approach to construct a neighborhood for each wolf to70

enhance the balance of local and global searches and maintain diversity.

In 2015, Ant Lion Optimizer (ALO) was proposed by Mirjalili [28]. ALO

mimics the interaction between antlions and ants in the trap, where ants move

over the search space and antlions hunt them and become fitter using traps.

A new random walk is introduced to model the ant’s movement as they move75

stochastically in nature to find some food. It has high exploitation and con-

vergence speed because of the adaptive boundary shrinking mechanism and

elitism. It also high exploration due to the random walk and roulette wheel

selection mechanisms. However, although it has few parameters, some schemes

and movements make ALO seems too-complicated. Hence, some versions of80

ALO are created by modifying, hybridizing, and providing an ability to solve a

4



multi-objective problem [13].

In 2020, the metaphor-less optimization methods called Rao algorithms were

proposed by Ravipudi Venkata Rao [29]. The Rao Algorithms use both best and

worst solutions in each iteration and the random interactions among the can-85

didate solutions to quickly find an optimum solution. They need two standard

parameters: population size and a maximum number of evaluations that easy to

adjust. They drop many parameters used in the previous metaphor-based algo-

rithms, such as cohesion, intensity, probability, and other commonly challenging

parameters to tune carefully.90

The Rao algorithms have three variants: Rao-1, Rao-2, and Rao-3, which

respectively use three different equations below:

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − Xj,worst,i) (1)

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − Xj,worst,i)+

r2,j,i(|Xj,k,i or Xj,l,i| − |Xj,l,i or Xj,k,i|),
(2)

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,best,i − |Xj,worst,i|)+

r2,j,i(|Xj,k,i or Xj,l,i| − (Xj,l,i or Xj,k,i)),
(3)

where Xj,best,i represents the best candidate as the value of variable j, and

Xj,worst,i represents the worst candidate as value of variable j, both throughout

the i-th iteration. X ′
j,k,i is the updated value after the equation, and both r1,j,i95

as well as r2,j,i are randomly generated in [0,1] for the j-th variable throughout

the i-th iteration. In the term |Xj,k,i or Xj,l,i|, the candidate solution k is

compared to another candidate l, which is randomly selected from the available

candidates in the population. The term |Xj,k,i| is selected if k is fitter than l.

Otherwise, the |Xj,l,i| is chosen. The same rule is applied to the second the100

term (Xj,l,i or Xj,k,i).

All formulas used in the three Rao algorithms are similar to GWO, making

them more exploitative than explorative. Using both best and worst solutions,

5
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they converge to an optimum solution for unimodal functions more quickly than 

GWO. However, with low explorative movement, they can be worse for multi-

modal functions. As described in [29], Rao is easy to get stuck in multimodal 

functions. Rao-3 gives a better solution in the Schwefel function from the six 

benchmark multimodal-functions and much worse for the other five benchmark 

multimodal-functions.

Therefore, in this research, an evolutionary Rao algorithm (ERA) is pro-

posed to enhance the three original Rao algorithms by introducing two addi-

tional schemes. Firstly, the population is split into two sub-populations based 

on their qualities: high and low, with a particular portion depending on the 

given problem. The high-quality sub-population searches for an optimum so-

lution in an exploitative manner using a movement scheme used in the Rao-3 

algorithm. Meanwhile, the low-quality one does in an explorative fashion using 

a new random walk introduced in this research. This scheme is similar to the 

courtship learning framework in the Enhanced FA [21], where the population 

is also divided into two subpopulations: female and male, but ERA uses a pre-

defined specific portion. Secondly, two evolutionary operators: crossover and 

mutation, are used to give exploitation and exploration searching strategies. 

A fitness-based adaptation is introduced to dynamically tune the the 

portion of high-quality individuals, mutation radius, and mutation rate during 

the evolution. Meanwhile, the crossover is implemented using a random 

scheme with the common probabilistic values that do not create any 

additional parameters. The ERA is finally examined and compared to the 

three original Rao algorithms [29] as well as the firefly algorithm with 

courtship learning (FA-CL) [21] using three groups of benchmark functions: 1) 

the classic benchmark functions that contain seven unimodal, six multimodal, 

and ten low-dimension multimodal; 2) the CEC-C06 2019 test suites that 

consists of ten benchmark functions [30]; and 3) the global trajectory 

optimization problems provided by European Space Agency that contains five 

real problems of Cassini1, GTOC1, Messenger, Sagas, and Cassini2 [31].
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2. Proposed Evolutionary Rao Algorithm

The pseudo-code of ERA is illustrated in Algorithm 1. In the initial phase,

define the fixed population size p, the initial portion of high-quality (HQ) indi-

viduals s = 0.5, the initial mutation radius a = 0.5, the initial mutation rate135

b = 0.9, and randomly initialize the population of p individuals. In the next

phase, the evolution is performed until a stopping condition is reached, such as

when the number of evaluations is equal to the given maximum limit.

In each generation, six steps are carried out. Firstly, the quality of each in-

dividual is calculated; and their quality-ranks are then sorted in the descending140

mode. Secondly, the population is split into two sub-populations: high-quality

(HQ) and low-quality (LQ), with the defined portion s, and both the best in-

dividual Xbest and the worst individual Xworst are selected. Thirdly, each HQ

individual is moved to follow the Xbest using Eq. (3). Fourthly, the fittest HQ

individual is selected as the BestHQ, and then one of the two evolutionary oper-145

ators is chosen: crossover (exploitative) or mutation (explorative), to move the

Xbest. Fifthly, each LQ individual is moved using a new random walk. Finally,

the fitness-based adaptation is performed by updating s, a, and b based on the

improvement or stagnation of two consecutive best-so-far fitness.

2.1. Two sub-populations150

The population of p candidate solutions (individuals) is split into two sub-

populations based on their qualities: high and low, with a proper portion based

on the given problem. The high-quality (HQ) sub-population searches for an

optimum solution in an exploitative manner using the same movement scheme

as in the Rao-3 algorithm. Meanwhile, the low-quality (LQ) one does in an ex-155

plorative fashion using a new random walk introduced in this research. Hence,

this scheme creates a new parameter s: the portion of high and low-quality

individuals in the population. It is in the interval (0, 1) and easy to adjust. Hy-

pothetically, it should be high (more than 0.5) to make ERA more exploitative

and faster to optimize the unimodal functions. In contrast, it must be low (less160
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Algorithm 1: Evolutionary Rao Algorithm
Result: Xbest as the optimum solution

Set p as the fixed population size (number of individuals);

Set s = 0.5, a = 0.5, and b = 0.9 as the initial values of high-quality (HQ)

individuals portion, mutation radius, and mutation rate, respectively;

Randomly initialize the population of p individuals;

while StoppingCondition = false do
for each individual, calculate its quality and then sort the

quality-ranks in the descending mode;

Select the fittest individual as the Xbest;

Select the most fit individuals with the defined portion s as the HQ

and the rests as the low-quality (LQ) individuals;

Select the lowest-quality individual as the Xworst;

for each HQ individual, move it to follow the Xbest using Eq. 3;

Select the fittest HQ individual as the BestHQ;

if rand > 0.5 then
Offsprings = Crossover(BestHQ, Xbest);

Replacement(BestHQ, Xbest, Offsprings);

else
Offspring =  Mutation(Xbest);

Replacement(Xbest, Offspring);

end

for each LQ individual move it to follow or distract a randomly

selected HQ individual on the half of dimensions using Eq. (9);

if two consecutive best-so-far fitness show an improvement then
Increase s, but decrease a and b, using Eq. (10), (11), and (12);

else

Decrease s, but increase a and b, using Eq. (10), (11), and (12);

Mutate (1 − s) × p low-quality individuals;

end

end
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than 0.5) to make ERA more explorative to solve the multimodal functions. A

fitness-based adaptation scheme is proposed to increase or decrease the portion

s automatically based on the best-so-far fitness during the evolution. If two

consecutive best-so-far fitness values show an improvement, then the portion s

is decreased to make ERA more exploitative. In contrast, if two consecutive165

best-so-far fitness shows a stagnation, then the portion s is increased to make

ERA more explorative. A detailed explanation will be provided in Subsection

2.5.

Furthermore, the population of p individuals is split into two subpopula-

tions: the high-quality subpopulation of h individuals and the low-quality sub-170

population of l individuals, which are calculated as

h = b(p − 1) × sc, (4)

l = (p − 1) − h, (5)

where s is the portion of HQ individuals in the population. However, both Eq.

(4) and Eq. (5) may produce zero for either h or l if the portion s is too-small or

too-high. Hence, an enforcement procedure is implemented to ensure that a too-

small s makes the HQ sub-population consists of at least two individuals, and175

a too-big s also makes the LQ sub-population contains at least two individuals.

2.2. Crossover

The crossover is implemented using a whole arithmetic crossover, which is

defined as

X ′ = r ∙ X + (1 − r) ∙ Y

Y ′ = r ∙ Y + (1 − r) ∙ X
(6)

where r is a randomly generated number in the interval (0, 1), which should be180

not equal to 0.5 to prevent generating the same two offsprings (new individuals);

if r = 0.5, then both offsprings X ′ and Y ′ are the same as the average of both
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current individuals X and Y . Hence, this crossover scheme does not need any

user parameter.

2.3. Mutation185

The mutation is simply implemented using a creep mutation by adding a

small value (positive or negative) to each mutated element. The small value is

randomly generated using a Gaussian probability that is symmetric, distributed

on 0, and has a high probability for the smaller values. The creep mutation is

defined as190

〈x1, x2, ...xn〉 → 〈x′
1, x

′
2, ...x

′
n〉, (7)

x′
i =






xi + (2r1 − 1) × a|Ui − Li|, if r2 < b

xi, otherwise,
(8)

where x1, x2, ...xn ∈ [Li, Ui], Li and Ui are the lower and upper bounds of the

interval of the ith element (variable or dimension), r1 and r2 are random values

with the normal distribution in the interval [0, 1], and a and b are the mutation

radius and the mutation rate, respectively, which are automatically tuned using

a fitness-based adaptation scheme that will be described in Subsection 2.5.195

2.4. Random walk

To provide an ability to search for an optimum solution in an explorative

manner, each LQ individual is moved using a new random walk formulated as

X ′
m,LQ,i = Xm,LQ,i + r1,m,i(Xm,HQ,n − Xm,LQ,i) (9)

where Xm,LQ,i and Xm,HQ,n is the LQ individual i and the HQ individual n

(randomly selected from the high-quality sub-population), respectively, and m200

is the randomly selected dimension; not all dimensions are used here to make

this random walk more explorative.
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2.5. Fitness-based adaptation scheme

Based on the above description, ERA has four parameters: population size

p, portion s, mutation-radius a, and mutation-rate b. Hypothetically, p is the205

most robust parameter. In contrast, s, a, and b are estimated quite sensitive

since they control the exploration strategy. Therefore, these three parameters

are designed to be tuned adaptively during the evolution. A new simple fitness-

based adaptation scheme based on the fitness values of the best-so-far individual

is proposed for this purpose. If two consecutive best-so-far fitness values show210

an improvement, then s is increased, but both a and b are decreased, to make

ERA more exploitative. In contrast, if two consecutive best-so-far fitness shows

a stagnation, then s is decreased, both a and b are increased to make ERA more

explorative, and all low-quality individuals are mutated using both new a and b

to spread them in new locations. The increment and decrement are formulated215

as follow:

s′ =






s × (1 − 4f1+4f2
2 ), if 4f1 > 0 and 4f2 > 0

s × 0.97, if 4f1 = 0 and 4f2 = 0
(10)

a′ =






a × 0.97, if 4f1 > 0 and 4f2 > 0

a × 1.03, if 4f1 = 0 and 4f2 = 0
(11)

b′ =






b × 0.97, if 4f1 > 0 and 4f2 > 0

b × 1.03, if 4f1 = 0 and 4f2 = 0
(12)

where 4f1 = |f1−f2|
f1

and 4f2 = |f2−f3|
f2

are the first and the second differences

of the fitness values of two consecutive generations during the evolution process,

respectively.

Moreover, the initial, minimum, and maximum values for those three pa-220

rameters can be easily defined. Since the characteristics of the given problem

are unknown, then the initial portion s is set as 0.5, while the minimum and

the maximum values are set to 0.1 and 0.9, respectively. Next, both minimum

and maximum values of a are set as 0.05 and 0.5, respectively. It means the

11

Lenovo
Highlight

Lenovo
Highlight



mutation of an element (dimension) can occur in the radius of 5% to 50% out of225

the search space. In other words, an individual can be mutated at the maximum

range of [-0.5, 0.5] in the search space. Hence, the mutation can cover the whole

search space. Next, the initial value of a is tuned as 0.5 to provide the maxi-

mum exploration in the beginning iterations of the evolution process. Finally,

b is defined in the interval [0.1, 0.9], and its initial value is 0.9 to maximize the230

exploration strategy in the beginning evolution process. Using the maximum

mutation radius and rate, ERA can have a high-exploration ability to handle

the effects of shift and rotation of the test functions, such as in the CEC-C06

2019 benchmark functions.

2.6. Complexity analysis of ERA235

The mathematical complexity of ERA can be analyzed as follows. For each

iteration, ERA has a time complexity of O(p×n + p× c + log p), where p is the

population size, n is the dimension of the given problem, c is the complexity

of the objective function calculation, and log p is the complexity of the fitness

sorting to split the population into HQ and LQ sub-populations. It is clear that240

compared to the original Rao, ERA is slightly more complicated because of the

additional sorting complexity of log p. Meanwhile, the complexity of the fitness-

based adaptation scheme can be ignored since it is quite low; it only contains

addition, substraction, and logical operations.

3. Results and Discussion245

In this research, twenty-three benchmark functions: seven unimodal, six

multimodal, and ten low-dimension multimodal functions [29] are used to inves-

tigate both exploitation and exploration abilities of the proposed ERA. Table

1 illustrates the benchmark functions with their identities (ID), names, types,

dimensions, ranges, and global optimum values fmin. Meanwhile, their two-250

dimensional views are illustrated in Figure 1. Seven benchmark functions, with

ID = 1 to 7, are unimodal to examine the exploitation ability. Next, six bench-

mark functions, ID = 8 to 13, are multimodal, with many local optima increasing
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as the dimension increases, to evaluate the exploration ability. Finally, ten func-

tions, ID = 14 to 23, are low-dimension multimodal (LDM) to investigate the255

exploration ability in the case of low-dimension optimization problems.

Table 1: Twenty three classic benchmark functions

Func Name Type Dim Range fmin

CF1 Sphere Unimodal 30 [-100, 100] 0

CF2 Schwefel 2.22 Unimodal 30 [-100, 100] 0

CF3 Schwefel 1.2 Unimodal 30 [-100, 100] 0

CF4 Schwefel 2.21 Unimodal 30 [-100, 100] 0

CF5 Rosenbrock Unimodal 30 [-30, 30] 0

CF6 Step Unimodal 30 [-100, 100] 0

CF7 Quartic Unimodal 30 [-1.28, 1.28] 0

CF8 Schwefel Multimodal 30 [-500, 500] -418.9829 × Dim

CF9 Rastrigin Multimodal 30 [-5.12, 5.12] 0

CF10 Ackley Multimodal 30 [-32, 32] 0

CF11 Griewank Multimodal 30 [-600, 600] 0

CF12 Penalized Multimodal 30 [-50, 50] 0

CF13 Penalized2 Multimodal 30 [-50, 50] 0

CF14 Foxholes LDM 2 [-65, 65] 0.998

CF15 Kowalik LDM 4 [-5, 5] 0.0003

CF16 Six Hump Camel LDM 2 [-5, 5] -1.0316

CF17 Branin LDM 2 [-5, 5] 0.398

CF18 GoldStein-Price LDM 2 [-2, 2] 3

CF19 Hartman 3 LDM 3 [0, 1] -3.86

CF20 Hartman 6 LDM 6 [0, 1] -3.32

CF21 Shekel 5 LDM 4 [0, 10] -10.1532

CF22 Shekel 7 LDM 4 [0, 10] -10.4029

CF23 Shekel 10 LDM 4 [0, 10] -10.5364
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(a) Function 1 (b) Function 2 (c) Function 3 (d) Function 4

(e) Function 5 (f) Function 6 (g) Function 7 (h) Function 8

(i) Function 9 (j) Function 10 (k) Function 11 (l) Function 12

(m) Function 13 (n) Function 14 (o) Function 15 (p) Function 16

(q) Function 17 (r) Function 18 (s) Function 19 (t) Function 20

(u) Function 21 (v) Function 22 (w) Function 23

Figure 1: Twenty three classic benchmark functions CF1 to CF23
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3.1. Preliminary observations

First, two parameters of ERA: population p and portion s, are observed to

see their behaviors in optimizing the twenty-three classic benchmark functions.

For each function, ninety experiments are performed using combination of ten260

values of p = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and nine values of s =

0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, which can be defined as pairs of (10, 0.1),

(10, 0.2), ..., (100, 0.9). For each experiment, the maximum number of function

evaluations is set to 30,000 with ten runs to reduce the coincidence. Here, only

three experimental results of the representative benchmark functions are shown265

and discussed, namely unimodal (Sphere, ID = 1), multimodal (Schwefel, ID =

8), and low-dimension multimodal (Shekel 7, ID = 22), to see the behaviors of

both parameters p and s in optimizing those three types of benchmark functions.

The common parameter value of p is finally selected as a fixed-optimum value for

all the benchmark functions. Meanwhile, the portion s is dynamically updated270

during the evolution process using a fitness-based adaptation scheme.

Figure 2 illustrates the experimental results for the problem of searching

a minimum solution to a unimodal function of Sphere (ID = 1), where the

vertical axis uses log(mean solution) to ensure the bar chart clearly shows all

results from the ninety experiments. It can be seen that a too-small (10) or a big275

population p (30 to 100) makes the ERA produces a bad solution. The bigger

the p, the worse the solution. A small portion s (0.5 or less) also yields a poor

solution. The smaller the s, the worse the solution. Hence, the combination of

a too-big p and a too-small s is not recommended. The optimum combination

is reached on p = 20 and s = 0.8. This result proves that a big portion of280

high-quality individuals in the small population makes the proposed ERA more

exploitative and faster to find the optimum solution.

Next, Figure 3 illustrates the ninety experimental results for the problem

of minimizing a multimodal function of Schwefel (ID = 8). It informs that the

portion s is sensitive, but the population size p is not; the bigger the s, the285

worse the solution. A too-big portion s drastically reduces the solution quality.

The optimum combination is reached on p = 30 and s = 0.2. This result proves
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Figure 2: Parameter tuning for a unimodal benchmark function of Sphere (ID = 1)

that a small portion of high-quality individuals in the small population makes

the proposed ERA more explorative and faster to find the optimum solution to

the multimodal functions with many local optima.290

Figure 3: Parameter tuning for a multimodal benchmark function of Schwefel (ID = 8)

Finally, Figure 4 illustrates the ninety experimental results for the problem

of minimizing a low-dimension multimodal function of Shekel 7 (ID = 22). It

also informs that the portion s is sensitive, but the population size p is not; the

bigger the s, the worse the solution. A too-big portion s drastically reduces the

solution quality. The optimum combination is reached on a big p = 100 and a295

low s = 0.2. However, a smaller p up to 20 or 30 also gives a good solution.

This result informs that a small portion of high-quality individuals in the big
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population makes ERA more explorative. Hence, it can search for an optimum

solution to the low-dimension multimodal functions with a wide flat area.

Figure 4: Parameter tuning for a low-dimension multimodal benchmark function of Shekel 7

(ID = 22)

The three observations above prove the hypothesis that p is more robust300

than s. Therefore, the adaptation scheme is applied on s instead of p. A

fitness-based adaptation of population size introduced in [32] is reported can

improve the performance of the differential evolution, but that scheme is not

used here since it will increase the complexity of ERA. Thus, p is designed to

be a fixed value and tuned manually by doing a few experiments.305

3.2. Parameter settings

Based on the research in [21], the best population size for FA-CL is 20. Thus,

the parameter setting is focused on Rao-1, Rao-2, Rao-3, and ERA. Here, ten

experiments with p = 10, 20, ..., 100 are carried out to find the optimum p for

each algorithm based on the Friedman Mean Rank (FMR).310

Figure 5 illustrates the experimental results. The behavior of p is similar

for Rao-1 and Rao-2. The smaller the p, the better the rank. The optimum

value is reached on p = 20 for both algorithms. Meanwhile, p gives a different

effect for Rao-3 that achieves the optimum value on p = 40. It also shows the

different impacts for ERA, which gets the optimum value on p = 60. Finally,315
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the parameter settings for ERA and the other algorithms are listed in Table 2.

Figure 5: Friedman mean rank calculated using ten different population sizes p for each

algorithm

Table 2: Parameter settings

Algorithm Parameter settings

Rao-1 p = 20

Rao-2 p = 20

Rao-3 p = 40

FA-CL p = 20, α = 0.5, βmin = 0.2, β = 1, γ = 1

ERA p = 60, s = 0.5, a = 0.5, b = 0.9

320

3.3. Evaluation on classic benchmark functions

First, the proposed ERA is then examined and compared with four other 

algorithms: Rao-1, Rao-2, Rao-3, and FA-CL to search the minimum solutions 

to the twenty-three benchmark functions listed in Table 1. For each benchmark 

function, the maximum number of function evaluations is set to 30,000 with 30 

runs to reduce the coincidence. The random seeds of the 30 initial populations
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(for each benchmark function) are the same when the algorithms use the same

population size p to get fairness. Otherwise, they are different. The Matlab325

source-codes used in the Rao-1, Rao-2 and Rao-3 refer to [29] while the one

used in FA-CL refers to [21]. Meanwhile, the optimum parameter settings for all

algorithms are described in Subsection 3.2. Table 3 illustrates the examination

results based on five metrics (Met): best solution, worst solution, mean solution,

standard deviation (STD), and mean function evaluations (MFE).330

Based on the two metrics, mean solution and STD, for the seven unimodal

functions, ID = 1 to 7, the proposed ERA commonly outperforms all the other

algorithms for the four functions with ID = 4, 5, 6, and 7. Unfortunately, it is

worse than Rao-3 and Rao-1 for two functions with ID = 1 and 2. Besides, it

is much worse than Rao-1 for the function ID = 3.335

Next, the investigation on the six multimodal functions, ID = 8 to 13, informs

that the proposed ERA also generally outperforms the competitors, where it

achieves much lower mean solutions for three functions with ID = 9, 10, and 12.

It is slightly worse than Rao-3 and Rao-2 for the function ID = 8. It is much

worse than Rao-1 and Rao-3 for the function ID = 11 and 13, respectively.340

Finally, the investigation on the ten low-dimension multimodal functions,

ID = 14 to 23, shows that the proposed ERA mostly gives better or equal

mean solutions than the competitors. It reaches the best solutions for the three

benchmark functions with ID = 20, 21 and 23. It gives the same or similar global

solutions, with quite low MFE, as the three Rao algorithms for the benchmark345

function with ID = 16, 17, 18, and 19. It is slightly worse than Rao-1 or Rao-3

only for three benchmark functions (ID = 14, 15, and 22).

Table 3 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

1 Best 1.44026E-13 0.000206616 1.37198E-16 3360.332345 1.44407E-11

Worst 1.56215E-11 0.05322429 3.57068E-13 7391.524099 7.07827E-10

Mean 1.6427E-12 0.007910073 2.93612E-14 5494.642553 2.03341E-10

STD 2.94821E-12 0.012500245 6.93888E-14 897.6329345 1.97333E-10

MFE 30000 30000 30000 30176.8 30032
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Table 3 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

2 Best 9.88458E-08 0.046106637 3.48002E-09 20.78017429 2.1222E-06

Worst 2.84524E-05 81.77760505 1.96246E-07 36.38814153 2.38276E-05

Mean 1.75865E-06 6.122312306 4.70062E-08 31.53033206 8.63966E-06

STD 5.11921E-06 16.17762336 5.36523E-08 3.444133931 4.73519E-06

MFE 30000 30000 30000 30182.46667 30028.2

3 Best 29.58384537 24308.67108 5351.839864 6485.004266 983.5012373

Worst 410.0667787 45693.37909 19092.21252 14405.71624 3470.902824

Mean 149.4341504 35855.17634 11301.74245 10486.02575 2303.225697

STD 105.4899095 5718.824871 3745.250011 1944.35227 728.8781476

MFE 30000 30000 30000 30208.9 30023.6

4 Best 1.201443048 7.137837854 0.042098173 21.36789617 0.042019247

Worst 12.36146637 28.08331631 59.65566877 36.06694776 0.300012918

Mean 5.214910493 16.15411285 7.347592214 28.9938981 0.124708246

STD 3.489736613 4.841469952 13.05854573 3.59291026 0.061288909

MFE 30000 30000 30000 30226.43333 30025.6

5 Best 0.287292008 0.439075353 12.58554648 226704.144 18.30326575

Worst 93.46438644 3019.406575 100.1684583 2564425.907 109.1279756

Mean 35.67946414 130.9427468 35.87671438 1261919.835 31.40688996

STD 29.6735389 546.4756884 27.26289807 584515.0346 17.69375467

MFE 30000 30000 30000 30203.33333 30029.4

6 Best 2 0 0 3792 0

Worst 53 12 3 7639 2

Mean 10.2 1.833333333 0.3 5555.266667 0.2

STD 9.219170432 3.006697505 0.651258728 1099.28108 0.484234198

MFE 30000 28073.33333 13776 30144.96667 12368

7 Best 0.03452811 0.03404685 0.005036199 1.530176956 0.004682426

Worst 0.211389877 0.168091645 0.081089247 4.106762973 0.036293801

Mean 0.080890625 0.093085738 0.019933199 2.624059197 0.013211183

STD 0.036979081 0.031284187 0.016182882 0.659081008 0.007750259

MFE 30000 30000 30000 30145.5 30027.2

8 Best -10682.09946 -10239.35633 -11345.58004 -4377.087113 -8879.935043

Worst -3893.432932 -5125.91502 -3869.781006 -3291.297315 -6882.950077

Mean -6470.266849 -8027.033295 -8325.725086 -3701.706264 -7753.907755

STD 2090.801691 1321.261016 2361.956999 288.5432924 413.9236488

MFE 30000 30000 30000 30163.16667 30038.8

9 Best 82.58144051 183.9047143 174.6873065 189.5462566 11.82239455
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Table 3 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

Worst 275.100287 283.1739045 249.2618453 242.3410246 44.09695302

Mean 211.4806106 238.8109701 203.3125985 216.0038257 29.26076862

STD 41.58262643 25.05505101 17.48088927 12.57640716 7.210275076

MFE 30000 30000 30000 30246.93333 30033.6

10 Best 1.340421288 0.01602575 4.51465E-09 11.80926578 9.14087E-07

Worst 19.96317829 19.96048248 0.931304602 13.48685262 1.87018E-05

Mean 3.544848527 6.029369132 0.062087072 12.71855001 4.61579E-06

STD 4.523133052 8.827128996 0.236279524 0.503095444 3.42908E-06

MFE 30000 30000 30000 30174.03333 30034.8

11 Best 3.87024E-13 0.000684082 4.67404E-14 18.67629168 5.55651E-11

Worst 0.070984139 0.741672368 0.569327929 68.09827573 0.343918782

Mean 0.016380538 0.480608522 0.125402819 41.81819117 0.093842602

STD 0.016674644 0.220909193 0.12739394 11.89438954 0.089296594

MFE 30000 30000 30000 30176.23333 30034.8

12 Best 2.95944E-12 0.101041766 0.320579961 1112.053147 0.031510408

Worst 25.77634972 15.3687038 2.587976377 219089.505 2.00220998

Mean 3.326291084 5.096597329 0.818413527 48693.6658 0.37438139

STD 5.791910477 3.953017932 0.57337885 53495.37265 0.390735094

MFE 30000 30000 30000 30234.96667 30038.6

13 Best 1.46599E-12 4.87385E-12 2.56084E-17 75765.28964 1.87724E-08

Worst 40.25456675 48.02336319 0.09737116 4583252.205 0.240192154

Mean 8.886192319 4.13473568 0.011985054 1560315.509 0.02981008

STD 12.0496735 11.2745274 0.025838424 994963.699 0.062183659

MFE 30000 30000 30000 30238.76667 30035

14 Best 0.998003838 0.998003838 0.998003839 0.998055928 0.998003838

Worst 0.998003838 0.998004194 0.999925881 3.968250346 0.998003843

Mean 0.998003838 0.998003852 0.998257477 1.808262855 0.998003838

STD 1.23698E-16 6.49804E-08 0.000527552 0.810513825 9.98569E-10

MFE 30000 30000 30000 30199.9 30035.2

15 Best 0.000307486 0.000307486 0.000324243 0.001364568 0.000424113

Worst 0.020434946 0.008333703 0.001272374 0.009562903 0.001380486

Mean 0.00454563 0.001289295 0.000596688 0.004038841 0.000701339

STD 0.008058756 0.001977607 0.000244477 0.002218998 0.000213724

MFE 30000 30000 30000 30297.76667 30030

16 Best -1.031628054 -1.031628233 -1.03162617 -1.031552471 -1.031627676

Worst -1.031584914 -1.03155237 -1.031600346 -1.011904581 -1.031602254
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Table 3 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

Mean -1.031611222 -1.031611907 -1.031611279 -1.028544595 -1.031615743

STD 1.08599E-05 1.47749E-05 7.75488E-06 0.003767043 8.22898E-06

MFE 7041.333333 7202 8500 30176.5 2338

17 Best 0.397894345 0.397887438 0.397897956 0.397910357 0.397888025

Worst 0.397999462 0.397996151 0.397988112 0.457108975 0.397998161

Mean 0.397945174 0.397940169 0.39794788 0.407336514 0.397952448

STD 2.93566E-05 3.44684E-05 2.58238E-05 0.012636874 3.35746E-05

MFE 595.3333333 465.3333333 896 29274.23333 1524

18 Best 3 3 3.00001234 3.00144078 3

Worst 3 3 3.002994418 3.461306359 3

Mean 3 3 3.00043706 3.132162867 3

STD 1.90941E-14 1.4162E-14 0.000581165 0.111886989 2.35699E-13

MFE 2750.666667 6644 30000 30283.56667 13147.6

19 Best -3.862647264 -3.862646836 -3.862630337 -3.86273971 -3.862476872

Worst -3.860015745 -3.860014013 -3.860166138 -3.814862203 -3.860018537

Mean -3.861284579 -3.860875224 -3.861230723 -3.847444698 -3.861305717

STD 0.000759734 0.000609944 0.000769165 0.01227268 0.000744026

MFE 526 326.6666667 721.3333333 29257.36667 1496

20 Best -3.321514906 -3.321517556 -3.321340804 -3.232776201 -3.3216568

Worst -3.190272286 -3.20310205 -3.20310205 -2.774548607 -3.18590451

Mean -3.271481418 -3.27357853 -3.257887186 -2.964897304 -3.283422687

STD 0.058118203 0.058528253 0.059569551 0.119154691 0.056560408

MFE 15438 12787.33333 16832 30262.93333 14456.4

21 Best -10.15319968 -10.15319968 -10.15319968 -9.237961427 -10.15319968

Worst -4.051730311 -2.630471668 -2.630471668 -2.348276139 -3.873011974

Mean -7.571532266 -7.286516369 -7.988655139 -5.13102673 -8.758677601

STD 2.183528248 2.791706593 2.300114085 2.319287801 2.257015113

MFE 30000 30000 30000 30201.03333 30029.6

22 Best -10.40293072 -10.40293811 -10.40293612 -10.26936583 -10.40292495

Worst -3.724300347 -1.837592971 -7.655316059 -2.356385661 -4.785539658

Mean -8.513729479 -9.193001948 -10.14971362 -5.773917362 -9.962990885

STD 2.516505404 2.672409474 0.667381659 2.772503044 1.251621589

MFE 19810 7462.666667 10530.66667 30195.36667 28090

23 Best -10.53640962 -10.53640895 -10.53640895 -9.998537379 -10.53640573

Worst -5.032711076 -2.421734027 -2.4273352 -2.420451607 -3.835426802

Mean -9.76293601 -8.189952935 -9.457598582 -5.207676489 -10.10837656
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Table 3 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functions

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

STD 1.635492849 3.653678401 2.385255584 2.37062617 1.331195279

MFE 18558.66667 10478 11730.66667 30157.76667 27428.6

FMR 2.43 3.17 2.13 4.83 1.52

Rank 3 4 2 5 1

As a summary, based on Table 3, ERA reaches better mean solutions than all

the competitors for 10 benchmark functions. It gives the same and worse mean350

solutions for 4 and 9 benchmark functions, respectively. Statistically, based on

the Friedman mean rank (FMR), ERA gives the highest performance with the

lowest FMR of 1.52. The Wilcoxon rank-sum test (WRST) illustrated in Table

4 confirms that ERA is significantly better than all the competitors for the six

benchmark functions (ID = 4, 7, 9, 10, 12, and 23), where all the p-values are355

less than 0.05. Meanwhile, for the four benchmark functions (ID = 5, 6, 20,

and 21), ERA is only significantly better than some competitors but not for the

others.

Moreover, the detailed investigations are then provided by the convergence

curve analysis. The three subsections below discuss the convergence curves in360

detail for three benchmark groups: high-dimensional unimodal, high-dimensional

multimodal, and low-dimensional multimodal.

3.3.1. Investigation on 30-dimensions unimodal functions

A detailed investigation of the seven 30-dimensions unimodal benchmark

functions, ID = 1 to 7, is discussed by illustrating two convergence analyses of365

the proposed ERA and all the competitors. For each benchmark function, the

maximum number of function evaluations is set to 30,000 with 30 runs to reduce

the coincidence.

Figure 6 shows the evolution of all the algorithms until convergence to the

optimum solution for the benchmark function of Sphere (ID = 1). The horizontal370

axis is the generation, calculated as 30,000 function evaluations divided by the
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Table 4: The p-values of Wilcoxon rank sum test (WRST) for 23 classic benchmark functions

ID ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

1 3.68973E-11 3.01986E-11 3.01986E-11 3.01986E-11

2 8.89099E-10 3.01986E-11 3.01986E-11 3.01986E-11

3 3.01986E-11 3.01986E-11 3.01986E-11 3.01986E-11

4 3.01986E-11 3.01986E-11 4.57257E-09 3.01986E-11

5 0.027086318 0.115362360 0.000526404 3.01986E-11

6 5.29270E-12 0.002309997 0.537496020 5.18120E-12

7 3.33839E-11 3.33839E-11 0.022360148 3.01986E-11

8 0.000421751 0.105469947 0.065671258 3.01986E-11

9 3.01986E-11 3.01986E-11 3.01986E-11 3.01986E-11

10 3.01986E-11 3.01986E-11 8.48477E-09 3.01986E-11

11 8.66343E-05 2.01522E-08 0.501143668 3.01986E-11

12 0.040595001 1.28704E-09 3.83067E-05 3.01986E-11

13 0.009883401 0.013271805 0.001766564 3.01986E-11

14 0.405861585 9.89193E-09 6.4749E-120 5.21903E-12

15 0.318136088 0.529748183 0.074827008 3.33839E-11

16 0.093340797 0.420386330 0.055545693 3.01986E-11

17 0.437641335 0.157975689 0.510597937 4.19968E-10

18 0.036392066 0.812931300 3.01041E-11 3.01041E-11

19 0.935191970 0.022360148 0.641423523 1.42942E-08

20 0.369977675 0.110560585 0.659705270 7.38908E-11

21 0.283376373 0.425345373 0.578792661 4.44405E-07

22 0.923442132 0.000556012 5.97056E-05 1.28704E-09

23 0.003670893 0.019094054 0.001235991 4.19968E-10

population size p. The random seeds of the 30 initial populations are the same

for the algorithms that use the same optimum population size p. Hence, in this

case, Rao-1, Rao-2, and FA-CL use the same initial population since they have
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the same optimum p = 20. In contrast, the Rao-3 and ERA use a different initial375

population because they have the optimum p = 40 and p = 60, respectively. Due

to the different optimum p for each algorithm, the evolution is illustrated using

the different step sizes of generation to get fairness. Here, the proposed ERA

uses a step size of 2, Rao-3 uses 3, and the rests use 6 so that all the algorithms

show the same generations of 1 to 250. It can be seen in Figure 6 that the ERA380

is worse than Rao-1 and Rao-3. This result also applies to two other similar

unimodal functions ID = 2 and 3.
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Figure 6: Convergence analysis for a unimodal benchmark function of Sphere (ID = 1)

Figure 7 shows the evolution of all the algorithms for the benchmark function

of Schwefel 2.21 (ID = 4). ERA converges much faster than the others. It

converges in the one-fourth of the evolution, and, at the end of evolution, it385

gives the lowest mean solution compared to Rao-1, Rao-2, Rao-3, and FA-CL

that produce much worse solutions. Similar results also happen to three other

unimodal functions ID = 5, 6, and 7.

3.3.2. Investigation on 30-dimensions multimodal functions

Next, a detailed investigation of the six 30-dimensional multimodal bench-390

mark functions, ID = 8 to 13, is illustrated by two convergence analyses of

the proposed ERA and all other algorithms. Figure 8 shows the convergence
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Figure 7: Convergence analysis for a unimodal benchmark function of Schwefel 2.21 (ID = 4)

curves for the multimodal function of Schwefel (ID = 8) that has many local

minima. ERA performs a little worse than Rao-1 and Rao-3, where it converges

to a slightly bigger solution. This result also applies to two other multimodal395

functions (ID = 11 and 13).
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Figure 8: Convergence analysis for a multimodal benchmark function of Schwefel (ID = 8)

Next, the convergence analysis is provided for the multimodal function of

Rastrigin with ID = 9 that also has many local minima. Figure 9 illustrates
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that the ERA converges much faster than the others. It evolves quickly in the

beginning generations and gives the lowest mean solution among the competitors400

at the end of evolution. ERA also converges similarly for two other unimodal

functions with ID = 10 and 12.
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Figure 9: Convergence analysis for a multimodal benchmark function of Rastrigin (ID = 9)

3.3.3. Investigation on low-dimension multimodal functions

Finally, the detailed investigations of ten benchmark low-dimension multi-

modal functions, ID = 14 to 23, are also illustrated by some convergence analyses405

of ERA and the competitors. Figure 10 shows the evolution of all the algorithms

for the 4-dimensions multimodal function of Shekel 7 (ID = 22) that has broad

flat areas. In this case, ERA converges to a similar solution to Rao-3.

Furthermore, the convergence analysis is carried out for the 4-dimensions

multimodal function of Shekel 10 (with ID = 23) with broad flat areas. Figure 11410

shows that ERA performs the best evolution and converges to a better solution

than the competitors. This result also applies to three other low-dimensions

multimodal functions with ID = 14, 15, and 21. Meanwhile, ERA gives the

same (or similar) convergence curves as the competitors for 16, 17, 18, 19, and

20.415

Those results of FMR, WRST, and convergence curves indicate that ERA
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generally outperforms all the competitors. It proves that the proposed schemes:

two sub-populations and evolutionary operators equipped with the adaptation

procedure can effectively control the exploration and exploitation balance. The

detailed investigations on the fitness-based adaptation scheme will be given in420

Subsection 3.6.
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Figure 10: Convergence analysis for a multimodal benchmark function of Shekel 7 (ID = 22)
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Figure 11: Convergence analysis for a multimodal benchmark function of Shekel 10 (ID = 23)
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3.4. Evaluation on CEC-C06 2019

The CEC-C06 2019 is a set of ten modern benchmark functions, namely

CEC01, CEC02, ..., CEC10. As described in [30], all the functions are scalable.

The seven functions (CEC04 to CEC10) are shifted and rotated, but the others425

(CEC01 to CEC03) are not. Those seven functions are set as 10-dimensional

minimization problems in the interval [-100, 100] while the rests have different

dimensions of 9, 16, and 18 in the interval [-8192, 8192], [-16384, 16384], and

[-4, 4], respectively. Besides, all ten benchmarks have the same global optimum

of 1.430

The proposed ERA is evaluated using those ten CEC-C06 2019 benchmarks,

where their Matlab codes refer to [30], to see its ability to handle the effects of

shift and rotation of the test functions. It is also compared with the four other

algorithms in their best performances using the parameter settings described in

Subsection 3.2. All algorithms are run 30 times with 30,000 function evaluations435

each to get meaningful statistical results. Moreover, both FMR and WRST with

the p-values are also provided.

The experimental results illustrated in Table 5 show that ERA outperforms

all the competitors for most benchmark functions. It reaches significantly better

mean solutions for 7 out of 10 benchmarks: CEC01, CEC03, CEC05, CEC06,440

CEC07, CEC08, and CEC10. It gives little worse solutions than Rao-1 and

Rao-2 for only three benchmarks: CEC02, CEC04, and CEC09. The Friedman

mean rank shows that ERA is the first rank, where it achieves the lowest FMR

of 1.50. Meanwhile Rao-1, Rao-2, Rao-3, and FA-CL give much worse FMR of

2.40, 2.50, 3.50, and 5.00, respectively.445

Moreover, the Wilcoxon rank-sum test illustrated in Table 6 confirms that

ERA is significantly better than all the competitors for the seven benchmark

functions, where all the p-values are lower than the significance level of 0.05,

except for the CEC03 where ERA is not significantly better than Rao-1. In

contrast, for CEC02, ERA is slightly worse than Rao-1 with a p-value of bigger450

than 0.05. Meanwhile, for CEC04 and CEC09, ERA is much worse than Rao-1

and Rao-2 with p-values of less than 0.05.
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Table 5 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for ten benchmarks of CEC-C06 2019

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

CEC01 Best 390354788.1 2916410938 1456657938 20718576008 25205057.57

Worst 18579735758 26602967009 22606057356 3.52496E+11 4087331440

Mean 2969561815 12158813001 8150847618 1.24685E+11 873534390.1

STD 3458651870 6343181227 6050933807 88017205415 854049190.6

MFE 30000 30000 30000 30258.9 30034.8

CEC02 Best 17.34285714 17.34285714 17.39624973 985.6431507 17.34385166

Worst 17.34285714 17.34285714 17.46552571 3599.0291 17.38067398

Mean 17.34285714 17.34285714 17.43100117 2309.760136 17.35587136

STD 7.04391E-15 6.66287E-15 0.019863442 686.3489262 0.008533771

MFE 30000 30000 30000 30167.6 30050

CEC03 Best 12.70240422 12.70240422 12.70240422 12.70243367 12.70240422

Worst 12.70251646 12.70252446 12.70253809 12.70313897 12.70240457

Mean 12.70241519 12.70242315 12.70243599 12.70275408 12.70240423

STD 2.61665E-05 3.04861E-05 3.51307E-05 0.000177661 6.36292E-08

MFE 30000 30000 30000 30194.93333 30036.4

CEC04 Best 28.09976484 30.65215071 161.5987987 1416.884608 12.6848588

Worst 55.30958498 67.28669199 293.2794152 7138.324036 137.9261529

Mean 39.24039894 48.18340414 214.1502774 3937.361268 42.30643978

STD 6.336978985 8.897804689 35.66651224 1184.043609 30.04084127

MFE 30000 30000 30000 30215.03333 30032.4

CEC05 Best 1.280029538 1.40996188 1.5745926 1.943716683 1.025782758

Worst 1.698018753 2.006177027 1.97844018 2.898249478 1.401388266

Mean 1.521217618 1.676196554 1.810647002 2.607524 1.152216958

STD 0.129249904 0.115365294 0.087314766 0.244163606 0.089725781

MFE 30000 30000 30000 30205.93333 30042

CEC06 Best 9.733872974 9.387891192 8.762132719 10.44553117 9.112980123

Worst 11.45221129 11.28957571 11.75705625 13.24136925 10.88436736

Mean 10.56696371 10.46733143 10.51740995 12.09261107 10.03315348

STD 0.440170202 0.509698432 0.686756457 0.804138499 0.496448922

MFE 30000 30000 30000 30177.5 30040.4

CEC07 Best 272.7315304 155.7756802 286.8881473 349.6263842 155.6301339

Worst 909.7970404 873.1138007 971.9938573 1424.750579 623.6837399

Mean 621.4329426 523.9535639 619.1594318 982.5206281 397.7660801

STD 182.4620119 177.2735789 175.8854884 241.0657041 115.7688378

MFE 30000 30000 30000 30189.7 30055.6

CEC08 Best 5.3786702 5.158716685 4.494612984 5.437849384 2.610104398
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Table 5 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for ten benchmark of CEC-C06 2019

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

Worst 6.875548609 6.47014268 6.121359357 7.20917994 5.372692569

Mean 6.000536425 5.812160004 5.518584178 6.554942645 4.300037284

STD 0.355903577 0.33238346 0.394227163 0.415653324 0.742690621

MFE 30000 30000 30000 30155.36667 30048.2

CEC09 Best 2.344511638 2.410388957 8.415440069 107.8777016 2.471916423

Worst 2.364279095 2.678458436 106.5608922 876.6191415 18.25738167

Mean 2.352775129 2.519079794 47.78092232 560.843819 4.325248722

STD 0.004691204 0.063901687 21.70671343 192.3434718 2.804045367

MFE 30000 30000 30000 30187.13333 30044.2

CEC10 Best 20.14320415 20.24340503 20.12140073 20.09700221 20.14872943

Worst 20.57898412 20.52293164 20.59178469 20.77386591 20.49628839

Mean 20.42696562 20.40786804 20.42908964 20.60276541 20.34605205

STD 0.082810151 0.073689655 0.085669202 0.131641593 0.072081928

MFE 30000 30000 30000 30155.63333 30027.6

FMR 2.40 2.50 3.50 5.00 1.50

Rank 2 3 4 5 1

Furthermore, the detailed investigations are then discussed by illustrating

the convergence analysis of ERA and all the competitors. For each benchmark455

function, the maximum number of function evaluations is set to 30,000 with 30

runs. Figure 12 illustrates the evolutionary processes of all algorithms until con-

verge the optimum solution for CEC01. In this case, ERA converges to a much

better solution than the other algorithms. ERA also gives similar curves for

six other benchmarks: CEC03, CEC05, CEC06, CEC07, CEC08, and CEC10.460

Figure 13 and 14 illustrate the converge curves for CEC05 and CEC08. Impres-

sively, for CEC05, ERA evolves most quickly in the beginning generations and

finally gives the best mean solution of 1.152216958, which is quite close to the

known global optimum of 1.

Next, the detailed investigation is then carried out for CEC02. Figure 15465

shows that ERA converges to a similar solution to Rao-1, Rao-2, and Rao-3. In

addition, ERA also gives similar curves for two other benchmarks: CEC04 and
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Table 6: The p-values of Wilcoxon rank sum test (WRST) for ten benchmark functions of

CEC-C06 2019

ID ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

CEC01 1.33668E-05 3.68973E-11 6.72195E-10 3.01986E-11

CEC02 2.36384E-12 6.31878E-12 3.01986E-11 3.01986E-11

CEC03 0.065461305 1.01761E-05 1.77301E-09 3.01986E-11

CEC04 0.053685253 0.004856016 3.01986E-11 3.01986E-11

CEC05 8.99341E-11 3.01986E-11 3.01986E-11 3.01986E-11

CEC06 0.000212646 0.002156638 0.001370333 9.91863E-11

CEC07 1.09069E-05 0.005322078 4.7445E-06 2.37147E-10

CEC08 3.01986E-11 7.38908E-11 4.99795E-09 3.01986E-11

CEC09 3.01986E-11 4.19968E-10 3.68973E-11 3.01986E-11

CEC10 5.60728E-05 0.00185748 3.59234E-05 7.38029E-10
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Figure 12: Convergence analysis for CEC01

CEC09, as illustrated in Figure 16 and Figure 17.

The results of FMR, WRST, and convergence curves above indicate that

ERA is generally better than all the competitors in handling the effects of shift470

and rotation. It can be achieved since ERA is designed with two schemes:
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Figure 13: Convergence analysis for CEC05
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Figure 14: Convergence analysis for CEC08

two sub-populations and evolutionary operators. Besides, it is also equipped

with a fitness-based adaptation scheme to dynamically tune the three sensitive

parameters: s, a, and b throughout the evolution process, which effectively

controls the exploration and exploitation balance in searching for the global475

optimum solution. A detailed investigation will be provided in Subsection 3.6.
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Figure 15: Convergence analysis for CEC02

0 50 100 150 200 250

Generation

1.5

2

2.5

3

3.5

4

4.5

Lo
g

 m
ea

n 
of

 th
e 

b
es

t-
so

-f
a

r 
so

lu
tio

n 
fo

r 
30

 r
un

s

Benchmark function CEC04

Rao-1
Rao-2
Rao-3
FA-CL
ERA

Figure 16: Convergence analysis for CEC02

3.5. Evaluation on real world problems

Finally, ERA is evaluated using the global trajectory optimization prob-

lems (GTOP), which European Space Agency provides. Here, five real-world

problems: Cassini1, GTOC1, Messenger, Sagas, and Cassini2 are used as the480

benchmarks to examine its capability to tackle the constrained problems. Here,

the four cases: Cassini1, Messenger, Sagas, and Cassini2 are the minimization

problems while GTOC1 is a maximization. Here, the summary of those five
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Figure 17: Convergence analysis for CEC02

problems is given briefly; the more detailed descriptions and their Matlab codes

can be seen in [31, 33, 34].485

As described in [31], Cassini1 is a mission of multiple gravity assist (MGA)

without the possibility of using deep space manouvres, which is related to the

Cassini spacecraft trajectory design problem. The objective is to minimize

the total delta velocity 4V accumulated during the mission with some given

constraints, where the planetary fly-by sequence is Earth-Venus-Venus-Earth-490

Jupiter-Saturn. It has six dimensions with a known global minimum solution

of 4.93 km/sec.

GTOC1 is also an MGA problem, where the objective is to maximize the

change in the semi-major axis of the asteroid orbit following an anaelastic impact

of the spacecraft with the asteroid under several given constraints. It has 8495

dimensions and the known global maximum is fmax = 1, 580, 599 kg km2/sec2.

In this paper, GTOC1 is converted into a minimization problem by modifying

the objective function to be fmin = 1, 580, 599 − fmax = 0 to make it the same

as all the other problems and simpler in the further evaluation.

Furthermore, Messenger, Sagas, and Cassini2 are the MGA problems with500

the possibility of using deep space manouvres (MGA-1DSM). The objective of
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Messenger is to minimize the total delta velocity 4V . It has 18 dimensions,

and the global minimum solution is 8.70257 km/sec. Meanwhile, the objective

of Sagas is to minimize the overall mission length of fly-by Jupiter and reach

50AU. It is a 12-dimensional problem with a global minimum of 18.1923 years.505

Finally, Cassini2 is similar to Cassini1, but it is a bigger 22-dimensional problem

with much higher complexity. The known best solution is 8.92401 km/sec.

In the five real-world problems, ERA is also compared with the four other

algorithms in their best performances using the parameter settings described in

Subsection 3.2. All algorithms are run 30 times with 200,000 function evalua-510

tions each as used in [31]. In addition, both FMR and WRST with the p-values

are also provided to confirm the significance of their performance.

The experimental results illustrated in Table 7 show that ERA outperforms

the competitors for three out of five problems. Hence, the Friedman mean rank

places ERA in the first rank with the lowest FMR of 1.80. Unfortunately, the515

Wilcoxon rank-sum test illustrated in Table 8 indicates that ERA significantly

outperforms (with p-values of less than 0.05) some of the competitors. It is

slightly (not significantly) better than Rao-1, Rao-2, and Rao-3 for Cassini1,

GTOC1, and Sagas, respectively.

Table 7 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for global trajectory optimization problems

Problem Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

Cassini1 Best 5.303768392 4.936855136 5.61179549 7.074851303 5.612797557

Worst 20.07805387 25.93297419 15.77360635 26.20831412 14.83107214

Mean 11.87916323 12.12477947 12.56694735 16.6899857 10.61999692

STD 3.554957586 3.64432772 2.23350672 4.840145141 2.876504936

MFE 200000 200000 200000 200187.4333 200044.6

GTOC1 Best 631827.7829 458914.6802 376896.2971 1411461.987 710462.7745

Worst 1548886.166 1551541.426 1536925.137 1569631.301 1311152.824

Mean 1147746.121 1093465.404 1051211.872 1524073.714 956084.4087

STD 233788.8767 331123.7832 266223.3551 43045.94967 136868.8532

MFE 200000 200000 200000 200124.6333 200049.6

Messenger Best 12.41560806 11.27514945 11.99302003 20.78291121 14.33306793

Worst 25.50492428 20.425443 22.54997489 28.24295896 20.46142743

Mean 18.35040915 14.97590782 16.61688953 25.51273265 16.37566883
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Table 7 Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for global trajectory optimization problems

Problem Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

STD 3.328431397 2.476903152 2.802312585 2.076873921 1.412144879

MFE 200000 200000 200000 200136.7 200047.8

Sagas Best 76.02938156 322.8420001 246.9977338 1267.982722 504.8182077

Worst 1615.462402 3734.488398 2310.454904 2319.048595 973.1650916

Mean 1024.564265 1202.784813 1017.331876 1722.402349 927.9858521

STD 345.5888343 619.2934569 310.6547919 205.0753697 99.79849535

MFE 200000 200000 200000 200206.9 200045.6

Cassini2 Best 10.62971719 11.03729327 15.93387459 32.97381024 21.03860384

Worst 44.68073676 36.96644582 32.11412822 47.76452256 30.01962572

Mean 25.0919048 23.93646566 25.58562866 40.28520967 26.03675587

STD 8.783109087 6.801655034 3.476676083 4.082917564 2.049424528

MFE 200000 200000 200000 200088.5667 200036.6

FMR 3.00 2.40 2.80 5.00 1.80

Rank 4 2 3 5 1

520

Table 8: The p-values of Wilcoxon rank sum test (WRST) for five global trajectory optimiza-

tion problems

Problem ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

Cassini1 0.318304227 0.072445596 0.00033679 8.1975E-07

GTOC1 0.000356384 0.108689773 0.02812867 3.01986E-11

Messenger 0.005084222 0.000691252 0.437641335 3.01986E-11

Sagas 0.022360148 0.000168132 0.111986872 3.01986E-11

Cassini2 0.332854692 0.008314609 0.529782491 3.01986E-11

Furthermore, the detailed investigations are then discussed by illustrating

the convergence curves of ERA and the competitors. Figure 18 illustrates the

evolution of all algorithms until to the optimum solution for CEC01. In this

case, ERA converges to a better solution than the other algorithms. Like all

the competitors, ERA evolves quickly in the beginning generations and gets525

stagnation. In addition, ERA also gives similar curves for GTOC1 and Sagas,

37

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight



as illustrated in Figure 19 and 21. However, for GTOC1, ERA reaches a much

better solution.

For both Messenger and Cassini2 problems, ERA gives worse convergence

curves than the Rao algorithms. Figure 20 informs that, in the beginning,530

ERA gives the same converge curve as the Rao-2, but it gets stuck after half of

the generations while Rao-2 keeps evolving and reaches a little better solution.

Meanwhile, Figure 22 shows that ERA evolves quickly in the early generations

but finally converges to a slightly worse solution than the three Rao algorithms.

However, those results of FMR, WRST, and convergence curves inform that535

ERA is better than the competitors in tackling the constrained real-world prob-

lems. It can be implied that the two proposed schemes: two sub-populations

and evolutionary operators, as well as the introduced adaptation procedure,

effectively balance the exploration and exploitation strategies. A detailed inves-

tigation regarding the adaptation scheme will be provided in Subsection 3.6.540
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Figure 18: Convergence analysis for Cassini1

3.6. Investigation on fitness-based adaptation scheme

The proposed fitness-based adaptation scheme is evaluated here using some

benchmarks to see its ability to control the exploration-exploitation balance.
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Figure 19: Convergence analysis for GTOC1
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Figure 20: Convergence analysis for Messenger

First, two classic benchmarks (with ID = 1 and 7) are selected as the represen-

tative 30-dimensional unimodal functions. Figure 23a illustrates that, for the545

Sphere function (ID = 1) that has only one global optimum, ERA converges

quite fast. It can be achieved since ERA works in an exploration manner in the

beginning generations and then quickly changes into an exploitation fashion,

where the three parameters s, a, and b reach around the maximum values of

0.9, 0.9, and 0.5, respectively, as shown in Figure 23b. Meanwhile, Figure 23c550
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Figure 21: Convergence analysis for Sagas
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Figure 22: Convergence analysis for Cassini2

illustrates that, for the Quartic function (with ID = 7) having many noises,

ERA converges more slowly and gets a stagnation. In this case, ERA works in

an exploration strategy throughout the evolution, where s tends to go to the

minimum value of 0.1 but a and b reach the maximum values of 0.9 and 0.5,

respectively, as shown in Figure 23d.555

Next, two classic benchmarks with ID = 8 and 10 are selected as the repre-

sentative 30-dimensional multimodal functions. Figure 24a illustrates that, for
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(c) Convergence curve of Function 7

0 50 100 150 200 250 300 350 400

Generation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ar

am
et

er
 v

al
ue

s 
o

f s
, a

, b

Fitness-based adaptation of s, a, b for Function 7

s
a
b

(d) Adaptation curve of Function 7

560

565

570

Figure 23: Convergence and adaptation curves for 30-dimensional unimodal benchmark func-

tions with ID = 1 and 7

the Schwefel function (ID = 8) having many global optimum solutions, ERA 

evolves quickly in early generations but finally gets s tuck on a  l ocal optimum. 

Here, ERA works in an exploration strategy throughout the evolution, where 

s tends to go around the minimum value but a and b on the maximum values, 

as shown in Figure 24b. Meanwhile, Figure 24c illustrates that, for the Ackley 

function (ID = 10) that also has many global optimum solutions, ERA con-

verges quickly and also gets a stagnation. In this case, ERA tends to work in 

an exploitation strategy throughout the evolution, where s is on the maximum 

value, but a and b tends on the medium values, as shown in Figure 24d.

Two classic benchmarks with ID = 20 and 21 are then chosen as the rep-

resentative low-dimensional multimodal functions. Figure 25a illustrates that, 

for the function of Hartman 6 (ID = 20) with many global optima, ERA con-

verges quite fast to the global optimum. It can be seen that ERA works in 

an exploration-exploitation balance strategy throughout the evolution, where s
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(c) Convergence curve of Function 10
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Figure 24: Convergence and adaptation curves for 30-dimensional multimodal benchmark 

functions: 8 and 10

is fluctuating b etween the minimum and the medium values w hile a  and b  are 

around the maximum values, as shown in Figure 25b. Meanwhile, Figure 25c 

illustrates that, for the function of Shekel 5 (ID = 21), ERA converges quickly to 

the global optimum. It tends to work in an exploration strategy throughout the 

evolution since Shekel 5 has a broad flat area, w here s  i s around the minimum 

value, but a and b tends on the maximum values, as shown in Figure 25d.

Two benchmarks of CEC01 and CEC05 are then chosen as the representative 

functions without and with both shifting and rotation, respectively. Figure 26a 

illustrates that, for the function without shifting and rotation, ERA evolves 

slowly. Unfortunately, it gets stuck for some generations and converges to a 

solution far from the global optimum. It can be seen that ERA works in an 

exploration-exploitation balance strategy throughout the evolution, where s is 

fluctuating b etween t he m inimum a nd t he m edium v alues w hile a  a nd b  are 

around the maximum values, as shown in Figure 26b. Meanwhile, Figure 26c
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(c) Convergence curve of Function 21
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Figure 25: Convergence and adaptation curves for low-dimensional multimodal benchmark

functions: 20 and 21

illustrates that, for the shifted and rotated function, ERA converges quickly to

a solution near the global optimum of 1. It works dynamically in exploration

and exploitation strategy during the evolution, where s is around the medium

value, but a and b tends on the maximum values, as shown in Figure 26d.

Finally, both Cassini1 and Messenger are selected as the representative of590

the real-world problems. Figure 27a illustrates that ERA evolves quickly in the

beginning generations, but it gets stuck and converges to a solution far from

the global optimum. It can be seen that ERA tends to work in an exploration

manner throughout the evolution, where s is on the minimum value while a and

b are around the maximum values, as shown in Figure 27b. Meanwhile, Figure595

27c shows that ERA evolves slowly and converges to a solution near the global

optimum. It works dynamically in exploration and exploitation strategy during

the evolution, where s is fluctuating between the minimum and the medium

values, but a and b tends on the maximum values, as shown in Figure 27d.
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Figure 26: Convergence and adaptation curves for CEC01 and CEC05
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(a) Convergence curve of Cassini1
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(c) Convergence curve of Messenger
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Figure 27: Convergence and adaptation curves for the global trajectory optimization problem

of Cassini1 and Messenger
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The convergence and adaptation curves above prove that the proposed adap-600

tation scheme effectively controls the exploration and exploitation balance. This

scheme makes ERA can handle many types of benchmark functions: unimodal,

multimodal, shifted, rotated, and also real-world problems.

4. Conclusions

The proposed evolutionary Rao algorithm (ERA) works very well based on605

two additional schemes: splitting the population into two subpopulations based

on their qualities: high and low, with a proper portion adaptively during the evo-

lution, and exploiting two evolutionary operators: crossover and mutation. The

evaluations of twenty-three classic benchmark functions and ten CEC-C06 2019

benchmarks show that it significantly outperforms all the competitors: Rao-1,610

Rao-2, Rao-3, and FA-CL, where it reaches the Friedman mean rank of 1.52 and

1.50, respectively, with the p-values of Wilcoxon rank-sum test of less than 0.05

for most of the benchmarks. Examining the five real-world global trajectory

optimization problems inform that ERA gives significant performances only for

some of the competitors. Detailed investigations prove that all the proposed615

schemes work well as they are designed and make ERA effectively control the

exploration and exploitation balance. All the proposed schemes make ERA able

to handle most of the benchmark functions with various types: unimodal, mul-

timodal, shifted, rotated, and also real-world problems. However, in the future,

a new advanced adaptation scheme to update the population size dynamically620

throughout the evolutionary process as well as a better mutation scheme will be

created to improve the performance of ERA. Besides, it will be comprehensively

examined using more challenging benchmarks.
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Evolutionary Rao Aalgorithm
⋆

⋆

Abstract

This paper proposes an evolutionary Rao algorithm (ERA) to enhance three state-of-the-art metaheuristic 

Rao algorithms (Rao-1, Rao-2, Rao-3) by introducing two new schemes. Firstly, the population is split into 

two sub-populations based on their qualities: high and low, with a particular portion. The high-quality sub-

population searches for an optimum solution in an exploitative manner using a movement scheme used in 

the Rao-3 algorithm. Meanwhile, the low-quality one does in an explorative fashion using a new random 

walk. Secondly, two evolutionary operators: crossover and mutation, are incorporated to provide both 

exploitation and exploration strategies. A fitness-based adaptation is introduced to dynamically tune the 

three parameters: the portion of high-quality individuals, mutation radius, and mutation rate throughout the 

evolution, based on the improvement of best-so-far fitness. In contrast, the crossover is implemented using a 

standard random scheme. Comprehensive examinations using 38 benchmarks: twenty-three classic 

functions, ten CEC-C06 2019 benchmarks, and five global trajectory optimization problems show that the 

proposed ERA generally outperforms the four competitors: Rao-1, Rao-2, Rao-3, and firefly algorithm with 

courtship learning (FA-CL). Detailed investigations indicate that both proposed schemes work very well to 

make ERA evolves in an exploitative manner, which is created by a high portion of high-quality individuals 

and the crossover operator, and avoids being trapped on the local optimum solutions in an explorative 

manner, which is generated by a high portion of low-quality individuals and the mutation operator. Finally, 

the adaptation scheme effectively controls the exploitation-exploration balance by dynamically tuning the 

portion, mutation radius, and mutation rate throughout the evolution process.

Keywords:  Evolutionary Rao algorithm; Exploitation-exploration balance; Fitness-based adaptation scheme; 

Random walk; Two subpopulations

1 Introduction

The metaheuristic optimization algorithms [Instruction: "... that can be categorized ..." --> "... can be categorized 

..."]that can be categorized into two groups: evolutionary algorithms (EAs) and swarm intelligence (SI) algorithms [1]. 

EAs are inspired by both evolution and natural selection, such as Genetic Algorithm (GA) [2], [3], Evolution Strategies 

(ES) [4], [5], and Differential Evolution (DE) [6]. Meanwhile, SI algorithms are inspired by a natural swarm, such as 

Particle Swarm Optimization (PSO) [7], [8], Firefly Algorithm (FA) [9], [10], Grey Wolf Optimizer (GWO) [11], [12], 

and Ant Lion Optimization (ALO) [13].

GA is one of the most popular EAs introduced in the 1970s [14]. It uses both evolution and natural selection that are 

applied to its population over generations. A population consists of some individual chromosomes, each representing a 
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candidate solution. The new chromosomes in a generation are either some of the best chromosomes (elitism) in the 

previous generation or generated by genetic operations, such as crossover and mutation. The crossover takes two 

chromosomes and produces one offspring inherited part of chromosome values from each parent. In contrast, the 

mutation is randomly changing some values in a chromosome. The mutation is responsible for exploration, while 

crossover and elitism direct toward exploitation. GA can avoid being trapped in the local optima. It is also applicable to 

non-differentiable and high dimensionality functions. On the other hand, it converges slowly because of the highly-

random operations that do not give a clear direction to find the global optimum solution quickly. However, various 

improvement schemes have been proposed to overcome the drawback, such as a concept of human-like constrained-

mating [15] that creates a more explorative search strategy.

In 1995, the Particle Swarm Optimisation (PSO) was introduced by Kennedy and Elberhart [16]. The movements of 

the particles in searching for a global optimum mimics the behavior of bird flocking and fish schooling. PSO is one of 

the most popular SI algorithms since it has three advantages: easy to implement, few parameters that are simply tuned, 

and effective in searching the global optimum solution since it has a clearer direction than GA. However, it tends to 

prematurely converge on a local optimum in optimizing a multimodal function since it uses a static finite leader and 

group based on a linear movement. Therefore, some strategies are developed to tackle the issue, such as a learning 

structure [17] to decouple exploration and exploitation and a dynamic updating of the inertia weights [18] to control the 

convergence.

In 2009, the Firefly Algorithm (FA) was proposed [19]. In FA, each firefly will be attracted to all other brighter (better) 

fireflies, not only to the global best like in PSO. Also, the brighter firefly's attractiveness is decreased proportioned to 

the distance between the two fireflies due to the light absorption. Since the fireflies will usually be attracted more to 

their brighter neighbor than the further away brightest individual, the exploration is more effective than PSO. In other 

words, FA uses a dynamic leader and group based on a nonlinear movement. Moreover, FA can be turned into PSO by 

setting the light absorption parameter such that every firefly can be seen clearly by all other fireflies. Consequently, all 

fireflies will be attracted to the brightest one (global best). In some experiments, FA shows better performance than 

PSO due to two critical characteristics [20]: 1) FA usually divides its population into a subgroup, 2) By not having an 

explicit global best, FA can avoid premature convergence. Several improved schemes are created to enhance the FA 

performance, such as a courtship learning framework [21], where the population is divided into subpopulations: female 

and male, to improve the convergence speed and solution accuracy. Another improvement scheme is the best neighbor 

guided strategy [22], where each firefly is attracted to the best firefly among some randomly chosen neighbors to 

decrease the firefly oscillations in every attraction-induced migration stage as well as increase the probability of the 

guidance a new better direction.

In 2014, Grey Wolf Optimization (GWO) was introduced by Mirjalili [23]. It is inspired by both the social hierarchy 

and hunting methods of grey wolves (GWs). The hierarchy of GWs has four groups: alpha, beta, delta, and omegas. 

GWO selects the three fittest wolves (best solutions) as the alpha, beta, and delta, while the rest as omegas. The hunting 

process of GWs is guided by the three fittest wolves. All omegas follow them. It has four phases, which are 

mathematically modeled into four behaviors: Harassing Prey, Hunting, Attacking, and Searching, that create a high 

exploitative searching strategy. It quickly converges to an optimum solution for unimodal functions. However, it suffers 

from multimodal functions since it has a low explorative movement. Therefore, some variants of GWO are developed 

by incorporating various mechanisms/operators, such as differential evolution with elimination mechanism [24], 

simulated annealing [25], or refraction learning operator [26]. GWO can also be improved using a dimension learning-

based hunting movement strategy [27], which uses a different approach to construct a neighborhood for each wolf to 

enhance the balance of local and global searches and maintain diversity.

In 2015, Ant Lion Optimizer (ALO) was proposed by Mirjalili [28]. ALO mimics the interaction between antlions and 

ants in the trap, where ants move over the search space and antlions hunt them and become fitter using traps. A new 

random walk is introduced to model the ant's movement as they move stochastically in nature to find some food. It has 

high exploitation and convergence speed because of the adaptive boundary shrinking mechanism and elitism. It also 

high exploration due to the random walk and roulette wheel selection mechanisms. However, although it has few 

parameters, some schemes and movements make ALO seems too-complicated. Hence, some versions of ALO are 

created by modifying, hybridizing, and providing an ability to solve a multi-objective problem [13].



In 2020, the metaphor-less optimization methods called Rao algorithms were proposed by Ravipudi Venkata Rao [29]. 

The Rao Algorithms use both best and worst solutions in each iteration and the random interactions among the 

candidate solutions to quickly find an optimum solution. They need two standard parameters: population size and a 

maximum number of evaluations that easy to adjust. They drop many parameters used in the previous metaphor-based 

algorithms, such as cohesion, intensity, probability, and other commonly challenging parameters to tune carefully.

The Rao algorithms have three variants: Rao-1, Rao-2, and Rao-3, which respectively use three different equations 

below:

where  represents the best candidate as the value of variable , and  represents the worst candidate as 

value of variable , both throughout the -th iteration.  is the updated value after the equation, and both  as well 

as  are randomly generated in [0,1] for the -th variable throughout the i-th variable throughout the th iteration. In 

the term  the candidate solution  is compared to another candidate , which is randomly selected from the 

available candidates in the population. The term  is selected if  is fitter than . Otherwise, the  is chosen. The 

same rule is applied to [Instruction: "... the second the term ..." --> "... the second term ..."]the second the term 

.

All formulas used in the three Rao algorithms are similar to GWO, making them more exploitative than explorative. 

Using both best and worst solutions, they converge to an optimum solution for unimodal functions more quickly than 

GWO. However, with low explorative movement, they can be worse for multimodal functions. As described in [29], 

Rao is easy to get stuck in multimodal functions. Rao-3 gives a better solution in the Schwefel function from the six 

benchmark multimodal-functions and much worse for the other five benchmark multimodal-functions.

Therefore, in this research, an evolutionary Rao algorithm (ERA) is proposed to enhance the three original Rao 

algorithms by introducing two additional schemes. Firstly, the population is split into two sub-populations based on 

their qualities: high and low, with a particular portion depending on the given problem. The high-quality sub-population 

searches for an optimum solution in an exploitative manner using a movement scheme used in the Rao-3 algorithm. 

Meanwhile, the low-quality one does in an explorative fashion using a new random walk introduced in this research. 

This scheme is similar to the courtship learning framework in the Enhanced FA [21], where the population is also 

divided into two subpopulations: female and male, but ERA uses a predefined specific portion. Secondly, two 

evolutionary operators: crossover and mutation, are used to give exploitation and exploration searching strategies. A 

fitness-based adaptation is introduced to dynamically tune the the portion of high-quality individuals, mutation radius, 

and mutation rate during the evolution. Meanwhile, the crossover is implemented using a random scheme with the 

common probabilistic values that do not create any additional parameters. The ERA is finally examined and compared 

to the three original Rao algorithms [29] as well as the firefly algorithm with courtship learning (FA-CL) [21] using 

three groups of benchmark functions: 1) the classic benchmark functions that contain seven unimodal, six multimodal, 

and ten low-dimension multimodal; 2) the CEC-C06 2019 test suites that consists of ten benchmark functions [30]; and 

3) the global trajectory optimization problems provided by European Space Agency that contains five real problems of 

Cassini1, GTOC1, Messenger, Sagas, and Cassini2 [31].

2 Proposed Evolutionary Rao Aevolutionary Rao algorithm

The pseudo-code of ERA is illustrated in Algorithm 1. In the initial phase, define the fixed population size , the initial 

portion of high-quality (HQ) individuals , the initial mutation radius , the initial mutation rate , and 

(1)

(2)

(3)



randomly initialize the population of  individuals. In the next phase, the evolution is performed until a stopping 

condition is reached, such as when the number of evaluations is equal to the given maximum limit.

In each generation, six steps are carried out. Firstly, the quality of each individual is calculated; and their quality-ranks 

are then sorted in the descending mode. Secondly, the population is split into two sub-populations: high-quality (HQ) 

and low-quality (LQ), with the defined portion , and both the best individual  and the worst individual  are 

selected. Thirdly, each HQ individual is moved to follow the  using Eq. (3). Fourthly, the fittest HQ individual is 

selected as the BestHQ, and then one of the two evolutionary operators is chosen: crossover (exploitative) or mutation 

(explorative), to move the . Fifthly, each LQ individual is moved using a new random walk. Finally, the fitness-

based adaptation is performed by updating , , and  based on the improvement or stagnation of two consecutive best-

so-far fitness.

Algorithm 1 Evolutionary Rao Aalgorithm

2.1 Two sub-populations

The population of  candidate solutions (individuals) is split into two sub-populations based on their qualities: high and 

low, with a proper portion based on the given problem. The high-quality (HQ) sub-population searches for an optimum 

solution in an exploitative manner using the same movement scheme as in the Rao-3 algorithm. Meanwhile, the low-

quality (LQ) one does in an explorative fashion using a new random walk introduced in this research. Hence, this 

scheme creates a new parameter : the portion of high and low-quality individuals in the population. It is in the interval 



(0, 1) and easy to adjust. Hypothetically, it should be high (more than 0.5) to make ERA more exploitative and faster to 

optimize the unimodal functions. In contrast, it must be low (less than 0.5) to make ERA more explorative to solve the 

multimodal functions. A fitness-based adaptation scheme is proposed to increase or decrease the portion  

automatically based on the best-so-far fitness during the evolution. If two consecutive best-so-far fitness values show an 

improvement, then the portion  is decreased to make ERA more exploitative. In contrast, if two consecutive best-so-

far fitness shows a stagnation, then the portion  is increased to make ERA more explorative. A detailed explanation 

will be provided in .

Furthermore, the population of  individuals is split into two subpopulations: the high-quality subpopulation of  

individuals and the low-quality sub-population of  individuals, which are calculated as

where  is the portion of HQ individuals in the population. However, both Eq. (4) and Eq.s. (4) and (5) may produce 

zero for either  or  if the portion  is too-small or too-high. Hence, an enforcement procedure is implemented to 

ensure that a too-small  makes the HQ sub-population consists of at least two individuals, and a too-big  also makes 

the LQ sub-population contains at least two individuals.

2.2 Crossover

The crossover is implemented using a whole arithmetic crossover, which is defined as

where  is a randomly generated number in the interval (0, 1), which should be not equal to  to prevent generating 

the same two offsprings (new individuals); if , then both offsprings  and  are the same as the average of both 

current individuals  and . Hence, this crossover scheme does not need any user parameter.

2.3 Mutation

The mutation is simply implemented using a creep mutation by adding a small value (positive or negative) to each 

mutated element. The small value is randomly generated using a Gaussian probability that is symmetric, distributed on 

0, and has a high probability for the smaller values. The creep mutation is defined as

where ,  and  are the lower and upper bounds of the interval of the th element (variable or 

dimension),  and  are random values with the normal distribution in the interval [0, 1], and  and  are the mutation 

radius and the mutation rate, respectively, which are automatically tuned using a fitness-based adaptation scheme that 

will be described in .

2.4 Random walk

Section 2.5

(4)

(5)

(6)

(7)

(8)

Section 2.5



To provide an ability to search for an optimum solution in an explorative manner, each LQ individual is moved using a 

new random walk formulated as

where  and  is the LQ individual  and the HQ individual  (randomly selected from the high-quality sub-

population), respectively, and m  is the randomly selected dimension; not all dimensions are used here to make this 

random walk more explorative.

2.5 Fitness-based adaptation scheme

Based on the above description, ERA has four parameters: population size , portion , mutation-radius , and 

mutation-rate . Hypothetically,  is the most robust parameter. In contrast, , , and  are estimated quite sensitive 

since they control the exploration strategy. Therefore, these three parameters are designed to be tuned adaptively during 

the evolution. A new simple fitness-based adaptation scheme based on the fitness values of the best-so-far individual is 

proposed for this purpose. If two consecutive best-so-far fitness values show an improvement, then  is increased, but 

both  and  are decreased, to make ERA more exploitative. In contrast, if two consecutive best-so-far fitness shows a 

stagnation, then  is decreased, both  and  are increased to make ERA more explorative, and all low-quality 

individuals are mutated using both new  and  to spread them in new locations. The increment and decrement are 

formulated as follow:

where  and  are the first and the second differences of the fitness values of two consecutive 

generations during the evolution process, respectively.

Moreover, the initial, minimum, and maximum values for those three parameters can be easily defined. Since the 

characteristics of the given problem are unknown, then the initial portion  is set as 0.5, while the minimum and the 

maximum values are set to 0.1 and 0.9, respectively. Next, both minimum and maximum values of  are set as 0.05 and 

0.5, respectively. It means the mutation of an element (dimension) can occur in the radius of 5to 50% to 50% out of the 

search space. In other words, an individual can be mutated at the maximum range of [-0.5, 0.5] in the search space. 

Hence, the mutation can cover the whole search space. Next, the initial value of  is tuned as 0.5 to provide the 

maximum exploration in the beginning iterations of the evolution process. Finally,  is defined in the interval [0.1, 0.9], 

and its initial value is 0.9 to maximize the exploration strategy in the beginning evolution process. Using the maximum 

mutation radius and rate, ERA can have a high-exploration ability to handle the effects of shift and rotation of the test 

functions, such as in the CEC-C06 2019 benchmark functions.

2.6 Complexity analysis of ERA

(9)

(10)

(11)

(12)



The mathematical complexity of ERA can be analyzed as follows. For each iteration, ERA has a time complexity of 

, where  is the population size,  is the dimension of the given problem,  is the complexity of 

the objective function calculation, and  is the complexity of the fitness sorting to split the population into HQ and 

LQ sub-populations. It is clear that compared to the original Rao, ERA is slightly more complicated because of the 

additional sorting complexity of . Meanwhile, the complexity of the fitness-based adaptation scheme can be 

ignored since it is quite low; it only contains addition, substraction, and logical operations.

3 Results and Ddiscussion

In this research, twenty-three benchmark functions: seven unimodal, six multimodal, and ten low-dimension 

multimodal functions [29] are used to investigate both exploitation and exploration abilities of the proposed ERA. Table 

1 illustrates the benchmark functions with their identities (ID), names, types, dimensions, ranges, and global optimum 

values . Meanwhile, their two-dimensional views are illustrated in [Instruction: Please update "Figure 1" --> "Fig. 

1" to make it consistent with all the others.]Figure 1. Seven benchmark functions, with ID = 1 to 7, are unimodal to 

examine the exploitation ability. Next, six benchmark functions, ID = 8 to 13, are multimodal, with many local optima 

increasing as the dimension increases, to evaluate the exploration ability. Finally, ten functions, ID = 14 to 23, are low-

dimension multimodal (LDM) to investigate the exploration ability in the case of low-dimension optimization problems.

Table 1

Twenty three classic benchmark functions

Func Name Type Dim Range

CF1 Sphere Unimodal 30 [ -100, 100] 0

CF2 Schwefel 2.22 Unimodal 30 [ -100, 100] 0

CF3 Schwefel 1.2 Unimodal 30 [ -100, 100] 0

CF4 Schwefel 2.21 Unimodal 30 [ -100, 100] 0

CF5 Rosenbrock Unimodal 30 [ -30, 30] 0

CF6 Step Unimodal 30 [ -100, 100] 0

CF7 Quartic Unimodal 30 [ -1.28, 1.28] 0

CF8 Schwefel Multimodal 30 [ -500, 500]-500, 500] 418.9829  Dim

CF9 Rastrigin Multimodal 30 [ -5.12, 5.12] 0

CF10 Ackley Multimodal 30 [ -32, 32] 0

CF11 Griewank Multimodal 30 [ -600, 600] 0

CF12 Penalized Multimodal 30 [ -50, 50] 0

CF13 Penalized2 Multimodal 30 [ -50, 50] 0

CF14 Foxholes LDM 2 [ -65, 65] 0.998

CF15 Kowalik LDM 4 [ -5, 5] 0.0003

CF16 Six Hump Camel LDM 2 [ -5, 5]-5, 5] 1.0316

CF17 Branin LDM 2 [ -5, 5] 0.398

CF18 GoldStein-Price LDM 2 [ -2, 2] 3

CF19 Hartman 3 LDM 3 [0, 1] -3.86

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



CF20 Hartman 6 LDM 6 [0, 1] -3.32

CF21 Shekel 5 LDM 4 [0, 10] -10.1532

CF22 Shekel 7 LDM 4 [0, 10] -10.4029

CF23 Shekel 10 LDM 4 [0, 10] -10.5364

Fig. 1



3.1 Preliminary observations

First, two parameters of ERA: population  and portion  are observed to see their behaviors in optimizing the twenty-

three classic benchmark functions. For each function, ninety experiments are performed using combination of ten10 

values of  = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and nine values of  = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, which 

Twenty three classic benchmark functions CF1 to CF23.



can be defined as pairs of (10, 0.1), (10, 0.2),..., (100, 0.9). For each experiment, the maximum number of function 

evaluations is set to 30,000 with ten runs to reduce the coincidence. Here, only three experimental results of the 

representative benchmark functions are shown and discussed, namely unimodal (Sphere, ID = 1), multimodal 

(Schwefel, ID = 8), and low-dimension multimodal (Shekel 7, ID = 22), to see the behaviors of both parameters  and 

 in optimizing those three types of benchmark functions. The common parameter value of  is finally selected as a 

fixed-optimum value for all the benchmark functions. Meanwhile, the portion  is dynamically updated during the 

evolution process using a fitness-based adaptation scheme.

Fig. 2 illustrates the experimental results for the problem of searching a minimum solution to a unimodal function of 

Sphere (ID = 1), where the vertical axis uses  to ensure the bar chart clearly shows all results from the 

ninety experiments. It can be seen that a too-small (10) or a big population  (30to –100) makes the ERA produces a 

bad solution. The bigger the , the worse the solution. A small portion  (0.5 or less) also yields a poor solution. The 

smaller the , the worse the solution. Hence, the combination of a too-big  and a too-small  is not recommended. 

The optimum combination is reached on  and . This result proves that a big portion of high-quality 

individuals in the small population makes the proposed ERA more exploitative and faster to find the optimum solution.

Next, Fig. 3 illustrates the ninety experimental results for the problem of minimizing a multimodal function of Schwefel 

(ID = 8). It informs that the portion  is sensitive, but the population size  is not; the bigger the , the worse the 

solution. A too-big portion  drastically reduces the solution quality. The optimum combination is reached on  

and . This result proves that a small portion of high-quality individuals in the small population makes the 

proposed ERA more explorative and faster to find the optimum solution to the multimodal functions with many local 

optima.

Fig. 2

Parameter tuning for a unimodal benchmark function of Sphere (ID = 1).

Fig. 3

Parameter tuning for a multimodal benchmark function of Schwefel (ID = 8).



Finally, Fig. 4 illustrates the ninety experimental results for the problem of minimizing a low-dimension multimodal 

function of Shekel 7 (ID = 22). It also informs that the portion  is sensitive, but the population size  is not; the bigger 

the , the worse the solution. A too-big portion  drastically reduces the solution quality. The optimum combination is 

reached on a big  and a low . However, a smaller  up to 20 or 30 also gives a good solution. This result 

informs that a small portion of high-quality individuals in the big population makes ERA more explorative. Hence, it 

can search for an optimum solution to the low-dimension multimodal functions with a wide flat area.

The three observations above prove the hypothesis that  is more robust than . Therefore, the adaptation scheme is 

applied on  instead of . A fitness-based adaptation of population size introduced in [32] is reported can improve the 

performance of the differential evolution, but that scheme is not used here since it will increase the complexity of ERA. 

Thus,  is designed to be a fixed value and tuned manually by doing a few experiments.

3.2 Parameter settings

Based on the research in [21], the best population size for FA-CL is 20. Thus, the parameter setting is focused on Rao-

1, Rao-2, Rao-3, and ERA. Here, ten experiments with  are carried out to find the optimum  for each 

algorithm based on the Friedman Mean Rank (FMR).

Fig. 5 illustrates the experimental results. The behavior of  is similar for Rao-1 and Rao-2. The smaller the , the 

better the rank. The optimum value is reached on  for both algorithms. Meanwhile,  gives a different effect for 

Rao-3 that achieves the optimum value on . It also shows the different impacts for ERA, which gets the optimum 

value on . Finally, the parameter settings for ERA and other algorithms are listed in Table 2.

Fig. 4

Parameter tuning for a low-dimension multimodal benchmark function of Shekel 7 (ID = 22)Fig. 5Friedman mean rank calculated 

using ten different population sizes p for each algorithm.

Fig. 5

Friedman mean rank calculated using 10 different population sizes  for each algorithm.



3.3 Evaluation on classic benchmark functions

First, the proposed ERA [Instruction: "is then examined" --> "is examined"]is then examined and compared with four 

other algorithms: Rao-1, Rao-2, Rao-3, and FA-CL to search the minimum solutions to the twenty-three benchmark 

functions listed in Table 1. For each benchmark function, the maximum number of function evaluations is set to 30,000 

with 30 runs to reduce the coincidence. The random seeds of the 30 initial populations (for each benchmark function) 

are the same when the algorithms use the same population size  to get fairness. Otherwise, they are different. The 

Matlab source-codes used in the Rao-1, Rao-2 and Rao-3 refer to [29] while the one used in FA-CL refers to [21]. 

Meanwhile, the optimum parameter settings for all algorithms are described in . Table 3 illustrates the 

examination results based on five metrics (Met): best solution, worst solution, mean solution, standard deviation (STD), 

and mean function evaluations (MFE).

Table 2

Parameter settings.

Algorithm Parameter settings

Rao-1

Rao-2

Rao-3

FA-CL

ERA

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

Section 3.2

Table 3

Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for 23 classic benchmark functionsIDMetricRao-1Rao-2Rao-3FA-CLERA.

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

1 Best 1.44026E-13 0.000206616 1.37198E-16 3360.332345 1.44407E-11

Worst 1.56215E-11 0.05322429 3.57068E-13 7391.524099 7.07827E-10

Mean 1.6427E-12 0.007910073 2.93612E-14 5494.642553 2.03341E-10

STD 2.94821E-12 0.012500245 6.93888E-14 897.6329345 1.97333E-10

MFE 30000 30000 30000 30176.8 30032

2 Best 9.88458E-08 0.046106637 3.48002E-09 20.78017429 2.1222E-06

Worst 2.84524E-05 81.77760505 1.96246E-07 36.38814153 2.38276E-05

Mean 1.75865E-06 6.122312306 4.70062E-08 31.53033206 8.63966E-06

STD 5.11921E-06 16.17762336 5.36523E-08 3.444133931 4.73519E-06

MFE 30000 30000 30000 30182.46667 30028.2

3 Best 29.58384537 24308.67108 5351.839864 6485.004266 983.5012373

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



Worst 410.0667787 45693.37909 19092.21252 14405.71624 3470.902824

Mean 149.4341504 35855.17634 11301.74245 10486.02575 2303.225697

STD 105.4899095 5718.824871 3745.250011 1944.35227 728.8781476

MFE 30000 30000 30000 30208.9 30023.6

4 Best 1.201443048 7.137837854 0.042098173 21.36789617 0.042019247

Worst 12.36146637 28.08331631 59.65566877 36.06694776 0.300012918

Mean 5.214910493 16.15411285 7.347592214 28.9938981 0.124708246

STD 3.489736613 4.841469952 13.05854573 3.59291026 0.061288909

MFE 30000 30000 30000 30226.43333 30025.6

5 Best 0.287292008 0.439075353 12.58554648 226704.144 18.30326575

Worst 93.46438644 3019.406575 100.1684583 2564425.907 109.1279756

Mean 35.67946414 130.9427468 35.87671438 1261919.835 31.40688996

STD 29.6735389 546.4756884 27.26289807 584515.0346 17.69375467

MFE 30000 30000 30000 30203.33333 30029.4

6 Best 2 0 0 3792 0

Worst 53 12 3 7639 2

Mean 10.2 1.833333333 0.3 5555.266667 0.2

STD 9.219170432 3.006697505 0.651258728 1099.28108 0.484234198

MFE 30000 28073.33333 13776 30144.96667 12368

7 Best 0.03452811 0.03404685 0.005036199 1.530176956 0.004682426

Worst 0.211389877 0.168091645 0.081089247 4.106762973 0.036293801

Mean 0.080890625 0.093085738 0.019933199 2.624059197 0.013211183

STD 0.036979081 0.031284187 0.016182882 0.659081008 0.007750259

MFE 30000 30000 30000 30145.5 30027.2

8 Best
-10682.09946-10239.35633-11345.58004-

4377.087113-10682.09946 10239.35633 11345.58004 4377.087113 8879.935043

Worst
-3893.432932-5125.91502-3869.781006-

3291.297315-3893.432932 5125.91502 3869.781006 3291.297315 6882.950077

Mean
-6470.266849-8027.033295-8325.725086-

3701.706264-6470.266849 8027.033295 8325.725086 3701.706264 7753.907755

STD 2090.801691 1321.261016 2361.956999 288.5432924 413.9236488

MFE 30000 30000 30000 30163.16667 30038.8

9 Best 82.58144051 183.9047143 174.6873065 189.5462566 11.82239455

Worst 275.100287 283.1739045 249.2618453 242.3410246 44.09695302

Mean 211.4806106 238.8109701 203.3125985 216.0038257 29.26076862

STD 41.58262643 25.05505101 17.48088927 12.57640716 7.210275076

MFE 30000 30000 30000 30246.93333 30033.6

10 Best 1.340421288 0.01602575 4.51465E-09 11.80926578 9.14087E-07

Worst 19.96317829 19.96048248 0.931304602 13.48685262 1.87018E-05

Mean 3.544848527 6.029369132 0.062087072 12.71855001 4.61579E-06



STD 4.523133052 8.827128996 0.236279524 0.503095444 3.42908E-06

MFE 30000 30000 30000 30174.03333 30034.8

11 Best 3.87024E-13 0.000684082 4.67404E-14 18.67629168 5.55651E-11

Worst 0.070984139 0.741672368 0.569327929 68.09827573 0.343918782

Mean 0.016380538 0.480608522 0.125402819 41.81819117 0.093842602

STD 0.016674644 0.220909193 0.12739394 11.89438954 0.089296594

MFE 30000 30000 30000 30176.23333 30034.8

12 Best 2.95944E-12 0.101041766 0.320579961 1112.053147 0.031510408

Worst 25.77634972 15.3687038 2.587976377 219089.505 2.00220998

Mean 3.326291084 5.096597329 0.818413527 48693.6658 0.37438139

STD 5.791910477 3.953017932 0.57337885 53495.37265 0.390735094

MFE 30000 30000 30000 30234.96667 30038.6

13 Best 1.46599E-12 4.87385E-12 2.56084E-17 75765.28964 1.87724E-08

Worst 40.25456675 48.02336319 0.09737116 4583252.205 0.240192154

Mean 8.886192319 4.13473568 0.011985054 1560315.509 0.02981008

STD 12.0496735 11.2745274 0.025838424 994963.699 0.062183659

MFE 30000 30000 30000 30238.76667 30035

14 Best 0.998003838 0.998003838 0.998003839 0.998055928 0.998003838

Worst 0.998003838 0.998004194 0.999925881 3.968250346 0.998003843

Mean 0.998003838 0.998003852 0.998257477 1.808262855 0.998003838

STD 1.23698E-16 6.49804E-08 0.000527552 0.810513825 9.98569E-10

MFE 30000 30000 30000 30199.9 30035.2

15 Best 0.000307486 0.000307486 0.000324243 0.001364568 0.000424113

Worst 0.020434946 0.008333703 0.001272374 0.009562903 0.001380486

Mean 0.00454563 0.001289295 0.000596688 0.004038841 0.000701339

STD 0.008058756 0.001977607 0.000244477 0.002218998 0.000213724

MFE 30000 30000 30000 30297.76667 30030

16 Best
-1.031628054-1.031628233-1.03162617-

1.031552471-1.031628054 1.031628233 1.03162617 1.031552471 1.031627676

Worst
-1.031584914-1.03155237-1.031600346-

1.011904581-1.031584914 1.03155237 1.031600346 1.011904581 1.031602254

Mean
-1.031611222-1.031611907-1.031611279-

1.028544595-1.031611222 1.031611907 1.031611279 1.028544595 1.031615743

STD 1.08599E-05 1.47749E-05 7.75488E-06 0.003767043 8.22898E-06

MFE 7041.333333 7202 8500 30176.5 2338

17 Best 0.397894345 0.397887438 0.397897956 0.397910357 0.397888025

Worst 0.397999462 0.397996151 0.397988112 0.457108975 0.397998161

Mean 0.397945174 0.397940169 0.39794788 0.407336514 0.397952448

STD 2.93566E-05 3.44684E-05 2.58238E-05 0.012636874 3.35746E-05

MFE 595.3333333 465.3333333 896 29274.23333 1524



18 Best 3 3 3.00001234 3.00144078 3

Worst 3 3 3.002994418 3.461306359 3

Mean 3 3 3.00043706 3.132162867 3

STD 1.90941E-14 1.4162E-14 0.000581165 0.111886989 2.35699E-13

MFE 2750.666667 6644 30000 30283.56667 13147.6

19 Best
-3.862647264-3.862646836-3.862630337-

3.86273971-3.862647264 3.862646836 3.862630337 3.86273971 3.862476872

Worst
-3.860015745-3.860014013-3.860166138-

3.814862203-3.860015745 3.860014013 3.860166138 3.814862203 3.860018537

Mean
-3.861284579-3.860875224-3.861230723-

3.847444698-3.861284579 3.860875224 3.861230723 3.847444698 3.861305717

STD 0.000759734 0.000609944 0.000769165 0.01227268 0.000744026

MFE 526 326.6666667 721.3333333 29257.36667 1496

20 Best
-3.321514906-3.321517556-3.321340804-

3.232776201-3.321514906 3.321517556 3.321340804 3.232776201

3.3216568

Worst
-3.190272286-3.20310205-3.20310205-

2.774548607-3.190272286 3.20310205 3.20310205 2.774548607 3.18590451

Mean
-3.271481418-3.27357853-3.257887186-

2.964897304-3.271481418 3.27357853 3.257887186 2.964897304 3.283422687

STD 0.058118203 0.058528253 0.059569551 0.119154691 0.056560408

MFE 15438 12787.33333 16832 30262.93333 14456.4

21 Best
-10.15319968-10.15319968-10.15319968-

9.237961427-10.15319968 10.15319968 10.15319968 9.237961427 10.15319968

Worst
-4.051730311-2.630471668-2.630471668-

2.348276139-4.051730311 2.630471668 2.630471668 2.348276139 3.873011974

Mean
-7.571532266-7.286516369-7.988655139-

5.13102673-7.571532266 7.286516369 7.988655139 5.13102673 8.758677601

STD 2.183528248 2.791706593 2.300114085 2.319287801 2.257015113

MFE 30000 30000 30000 30201.03333 30029.6

22 Best
-10.40293072-10.40293811-10.40293612-

10.26936583-10.40293072 10.40293811 10.40293612 10.26936583 10.40292495

Worst
-3.724300347-1.837592971-7.655316059-

2.356385661-3.724300347 1.837592971 7.655316059 2.356385661 4.785539658

Mean
-8.513729479-9.193001948-10.14971362-

5.773917362-8.513729479 9.193001948 10.14971362 5.773917362 9.962990885

STD 2.516505404 2.672409474 0.667381659 2.772503044 1.251621589

MFE 19810 7462.666667 10530.66667 30195.36667 28090

23 Best
-10.53640962-10.53640895-10.53640895-

9.998537379-10.53640962 10.53640895 10.53640895 9.998537379 10.53640573

Worst
-5.032711076-2.421734027-2.4273352-

2.420451607-5.032711076 2.421734027

2.4273352

2.420451607 3.835426802

Mean
-9.76293601-8.189952935-9.457598582-

5.207676489-9.76293601 8.189952935 9.457598582 5.207676489 10.10837656

STD 1.635492849 3.653678401 2.385255584 2.37062617 1.331195279



Based on the two metrics, mean solution and STD, for the seven unimodal functions, ID = 1 to 7, the proposed ERA 

commonly outperforms all the other algorithms for the four functions with ID = 4, 5, 6, and 7. Unfortunately, it is worse 

than Rao-3 and Rao-1 for two functions with ID = 1 and 2. Besides, it is much worse than Rao-1 for the function ID = 

3.

Next, the investigation on the six multimodal functions, ID = 8 to 13, informs that the proposed ERA also generally 

outperforms the competitors, where it achieves much lower mean solutions for three functions with ID = 9, 10, and 12. 

It is slightly worse than Rao-3 and Rao-2 for the function ID = 8. It is much worse than Rao-1 and Rao-3 for the 

function ID = 11 and 13, respectively.

Finally, the investigation on the ten low-dimension multimodal functions, ID = 14 to 23, shows that the proposed ERA 

mostly gives better or equal mean solutions than the competitors. It reaches the best solutions for the three benchmark 

functions with ID = 20, 21 and 23. It gives the same or similar global solutions, with quite low MFE, as the three Rao 

algorithms for the benchmark function with ID = 16, 17, 18, and 19. It is slightly worse than Rao-1 or Rao-3 only for 

three benchmark functions (ID = 14, 15, and 22).

As a summary, based on Table 3, ERA reaches better mean solutions than all the competitors for 10 benchmark 

functions. It gives the same and worse mean solutions for 4 and 9 benchmark functions, respectively. Statistically, based 

on the Friedman mean rank (FMR), ERA gives the highest performance with the lowest FMR of 1.52. The Wilcoxon 

rank-sum test (WRST) illustrated in Table 4 confirms that ERA is significantly better than all the competitors for the six 

benchmark functions (ID = 4, 7, 9, 10, 12, and 23), where all the -values are less than 0.05. Meanwhile, for the four 

benchmark functions (ID = 5, 6, 20, and 21), ERA is only significantly better than some competitors but not for the 

others.

MFE 18558.66667 10478 11730.66667 30157.76667 27428.6

FMR 2.43 3.17 2.13 4.83 1.52

Rank 3 4 2 5 1

Table 4

The -values of Wilcoxon rank sum test (WRST) for 23 classic benchmark functions.

ID ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

1 3.68973E-11 3.01986E-11 3.01986E-11 3.01986E-11

2 8.89099E-10 3.01986E-11 3.01986E-11 3.01986E-11

3 3.01986E-11 3.01986E-11 3.01986E-11 3.01986E-11

4 3.01986E-11 3.01986E-11 4.57257E-09 3.01986E-11

5 0.027086318 0.115362360 0.000526404 3.01986E-11

6 5.29270E-12 0.002309997 0.537496020 5.18120E-12

7 3.33839E-11 3.33839E-11 0.022360148 3.01986E-11

8 0.000421751 0.105469947 0.065671258 3.01986E-11

9 3.01986E-11 3.01986E-11 3.01986E-11 3.01986E-11

10 3.01986E-11 3.01986E-11 8.48477E-09 3.01986E-11

11 8.66343E-05 2.01522E-08 0.501143668 3.01986E-11

12 0.040595001 1.28704E-09 3.83067E-05 3.01986E-11

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



Moreover, the detailed investigations are then provided by the convergence curve analysis. The three subsections below 

discuss the convergence curves in detail for three benchmark groups: high-dimensional unimodal, high-dimensional 

multimodal, and low-dimensional multimodal.

3.3.1 Investigation on 30-dimensions unimodal functions

A detailed investigation of the seven 30-dimensions unimodal benchmark functions, ID = 1 to 7, is discussed by 

illustrating two convergence analyses of the proposed ERA and all the competitors. For each benchmark function, the 

maximum number of function evaluations is set to 30,000 with 30 runs to reduce the coincidence.

Fig. 6 shows the evolution of all the algorithms until convergence to the optimum solution for the benchmark function 

of Sphere (ID = 1). The horizontal axis is the generation, calculated as 30,000 function evaluations divided by the 

population size . The random seeds of the 30 initial populations are the same for the algorithms that use the same 

optimum population size . Hence, in this case, Rao-1, Rao-2, and FA-CL use the same initial population since they 

have the same optimum . In contrast, the Rao-3 and ERA use a different initial population because they have the 

optimum  and , respectively. Due to the different optimum  for each algorithm, the evolution is illustrated 

using the different step sizes of generation to get fairness. Here, the proposed ERA uses a step size of 2, Rao-3 uses 3, 

and the rests use 6 so that all the algorithms show the same generations of 1 to 250. It can be seen in Fig. 6 that the 

ERA is worse than Rao-1 and Rao-3. This result also applies to two other similar unimodal functions ID = 2 and 3.

Fig. 7 shows the evolution of all the algorithms for the benchmark function of Schwefel 2.21 (ID = 4). ERA converges 

much faster than the others. It converges in the one-fourth of the evolution, and, at the end of evolution, it gives the 

13 0.009883401 0.013271805 0.001766564 3.01986E-11

14 0.405861585 9.89193E-09 6.4749E-120 5.21903E-12

15 0.318136088 0.529748183 0.074827008 3.33839E-11

16 0.093340797 0.420386330 0.055545693 3.01986E-11

17 0.437641335 0.157975689 0.510597937 4.19968E-10

18 0.036392066 0.812931300 3.01041E-11 3.01041E-11

19 0.935191970 0.022360148 0.641423523 1.42942E-08

20 0.369977675 0.110560585 0.659705270 7.38908E-11

21 0.283376373 0.425345373 0.578792661 4.44405E-07

22 0.923442132 0.000556012 5.97056E-05 1.28704E-09

23 0.003670893 0.019094054 0.001235991 4.19968E-10

Fig. 6

Convergence analysis for a unimodal benchmark function of Sphere (ID = 1).



lowest mean solution compared to Rao-1, Rao-2, Rao-3, and FA-CL that produce much worse solutions. Similar 

results also happen to three other unimodal functions ID = 5, 6, and 7.

3.3.2 Investigation on 30-dimensions multimodal functions

Next, a detailed investigation of the six 30-dimensional multimodal benchmark functions, ID = 8 to 13, is illustrated by 

two convergence analyses of the proposed ERA and all other algorithms. Fig. 8 shows the convergence curves for the 

multimodal function of Schwefel (ID = 8) that has many local minima. ERA performs a little worse than Rao-1 and 

Rao-3, where it converges to a slightly bigger solution. This result also applies to two other multimodal functions (ID = 

11 and 13).

Next, the convergence analysis is provided for the multimodal function of Rastrigin with ID = 9 that also has many 

local minima. Fig. 9 illustrates that the ERA converges much faster than the others. It evolves quickly in the beginning 

generations and gives the lowest mean solution among the competitors at the end of evolution. ERA also converges 

similarly for two other unimodal functions with ID = 10 and 12.

Fig. 7

Convergence analysis for a unimodal benchmark function of Schwefel 2.21 (ID = 4).

Fig. 8

Convergence analysis for a multimodal benchmark function of Schwefel (ID = 8).

Fig. 9



3.3.3 Investigation on low-dimension multimodal functions

Finally, the detailed investigations of ten benchmark low-dimension multimodal functions, ID = 14 to 23, are also

illustrated by some convergence analyses of ERA and the competitors. Fig. 10 shows the evolution of all the algorithms

for the 4-dimensions multimodal function of Shekel 7 (ID = 22) that has broad flat areas. In this case, ERA converges

to a similar solution to Rao-3.

Furthermore, the convergence analysis is carried out for the 4-dimensions multimodal function of Shekel 10 (with ID =

23) with broad flat areas. Fig. 11 shows that ERA performs the best evolution and converges to a better solution than

the competitors. This result also applies to three other low-dimensions multimodal functions with ID = 14, 15, and 21.

Meanwhile, ERA gives the same (or similar) convergence curves as the competitors for 16, 17, 18, 19, and 20.

Convergence analysis for a multimodal benchmark function of Rastrigin (ID = 9).

Fig. 10

Convergence analysis for a multimodal benchmark function of Shekel 7 (ID = 22).

Fig. 11



Those results of FMR, WRST, and convergence curves indicate that ERA generally outperforms all the competitors. It 

proves that the proposed schemes: two sub-populations and evolutionary operators equipped with the adaptation 

procedure can effectively control the exploration and exploitation balance. The detailed investigations on the fitness-

based adaptation scheme will be given in .

3.4 Evaluation on CEC-C06 2019

The CEC-C06 2019 is a set of ten modern benchmark functions, namely CEC01, CEC02,..., CEC10. As described in 

[30], all the functions are scalable. The seven functions (CEC04 to CEC10) are shifted and rotated, but the others 

(CEC01 to CEC03) are not. Those seven functions are set as 10-dimensional minimization problems in the interval [

-100, 100] while the rests have different dimensions of 9, 16, and 18 in the interval [ -8192, 8192], [-16384, 16384], 

and [-8192, 8192], [ 16384, 16384], and [ 4, 4], respectively. Besides, all ten benchmarks have the same global 

optimum of 1.

The proposed ERA is evaluated using those ten CEC-C06 2019 benchmarks, where their Matlab codes refer to [30], to 

see its ability to handle the effects of shift and rotation of the test functions. It is also compared with the four other 

algorithms in their best performances using the parameter settings described in . All algorithms are run 30 

times with 30,000 function evaluations each to get meaningful statistical results. Moreover, both FMR and WRST with 

the -values are also provided. The experimental results illustrated in Table 5 show that ERA outperforms all the 

competitors for most benchmark functions. It reaches significantly better mean solutions for 7 out of 10 benchmarks: 

CEC01, CEC03, CEC05, CEC06, CEC07, CEC08, and CEC10. It gives little worse solutions than Rao-1 and Rao-2 

for only three benchmarks: CEC02, CEC04, and CEC09. The Friedman mean rank shows that ERA is the first rank, 

where it achieves the lowest FMR of 1.50. Meanwhile Rao-1, Rao-2, Rao-3, and FA-CL give much worse FMR of 

2.40, 2.50, 3.50, and 5.00, respectively.

Convergence analysis for a multimodal benchmark function of Shekel 10 (ID = 23).

Section 3.6

Section 3.2

Table 5

Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA for ten benchmarks of CEC-C06 2019IDMetricRao-1Rao-2Rao-3FA-CLERA.

ID Metric Rao-1 Rao-2 Rao-3 FA-CL ERA

CEC01 Best 390354788.1 2916410938 1456657938 20718576008 25205057.57

Worst 18579735758 26602967009 22606057356 3.52496E+11 4087331440

Mean 2969561815 12158813001 8150847618 1.24685E+11 873534390.1

STD 3458651870 6343181227 6050933807 88017205415 854049190.6

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



MFE 30000 30000 30000 30258.9 30034.8

CEC02 Best 17.34285714 17.34285714 17.39624973 985.6431507 17.34385166

Worst 17.34285714 17.34285714 17.46552571 3599.0291 17.38067398

Mean 17.34285714 17.34285714 17.43100117 2309.760136 17.35587136

STD 7.04391E-15 6.66287E-15 0.019863442 686.3489262 0.008533771

MFE 30000 30000 30000 30167.6 30050

CEC03 Best 12.70240422 12.70240422 12.70240422 12.70243367 12.70240422

Worst 12.70251646 12.70252446 12.70253809 12.70313897 12.70240457

Mean 12.70241519 12.70242315 12.70243599 12.70275408 12.70240423

STD 2.61665E-05 3.04861E-05 3.51307E-05 0.000177661 6.36292E-08

MFE 30000 30000 30000 30194.93333 30036.4

CEC04 Best 28.09976484 30.65215071 161.5987987 1416.884608 12.6848588

Worst 55.30958498 67.28669199 293.2794152 7138.324036 137.9261529

Mean 39.24039894 48.18340414 214.1502774 3937.361268 42.30643978

STD 6.336978985 8.897804689 35.66651224 1184.043609 30.04084127

MFE 30000 30000 30000 30215.03333 30032.4

CEC05 Best 1.280029538 1.40996188 1.5745926 1.943716683 1.025782758

Worst 1.698018753 2.006177027 1.97844018 2.898249478 1.401388266

Mean 1.521217618 1.676196554 1.810647002 2.607524 1.152216958

STD 0.129249904 0.115365294 0.087314766 0.244163606 0.089725781

MFE 30000 30000 30000 30205.93333 30042

CEC06 Best 9.733872974 9.387891192 8.762132719 10.44553117 9.112980123

Worst 11.45221129 11.28957571 11.75705625 13.24136925 10.88436736

Mean 10.56696371 10.46733143 10.51740995 12.09261107 10.03315348

STD 0.440170202 0.509698432 0.686756457 0.804138499 0.496448922

MFE 30000 30000 30000 30177.5 30040.4

CEC07 Best 272.7315304 155.7756802 286.8881473 349.6263842 155.6301339

Worst 909.7970404 873.1138007 971.9938573 1424.750579 623.6837399

Mean 621.4329426 523.9535639 619.1594318 982.5206281 397.7660801

STD 182.4620119 177.2735789 175.8854884 241.0657041 115.7688378

MFE 30000 30000 30000 30189.7 30055.6

CEC08 Best 5.3786702 5.158716685 4.494612984 5.437849384 2.610104398

Worst 6.875548609 6.47014268 6.121359357 7.20917994 5.372692569

Mean 6.000536425 5.812160004 5.518584178 6.554942645 4.300037284

STD 0.355903577 0.33238346 0.394227163 0.415653324 0.742690621

MFE 30000 30000 30000 30155.36667 30048.2

CEC09 Best 2.344511638 2.410388957 8.415440069 107.8777016 2.471916423

Worst 2.364279095 2.678458436 106.5608922 876.6191415 18.25738167

Mean 2.352775129 2.519079794 47.78092232 560.843819 4.325248722



Moreover, the Wilcoxon rank-sum test illustrated in Table 6 confirms that ERA is significantly better than all the 

competitors for the seven benchmark functions, where all the -values are lower than the significance level of 0.05, 

except for the CEC03 where ERA is not significantly better than Rao-1. In contrast, for CEC02, ERA is slightly worse 

than Rao-1 with a -value of bigger than 0.05. Meanwhile, for CEC04 and CEC09, ERA is much worse than Rao-1 

and Rao-2 with -values of less than 0.05.

Furthermore, the detailed investigations are then discussed by illustrating the convergence analysis of ERA and all the 

competitors. For each benchmark function, the maximum number of function evaluations is set to 30,000 with 30 runs. 

Fig. 12 illustrates the evolutionary processes of all algorithms until converge the optimum solution for CEC01. In this 

case, ERA converges to a much better solution than the other algorithms. ERA also gives similar curves for six other 

benchmarks: CEC03, CEC05, CEC06, CEC07, CEC08, and CEC10. Figs. 13 and 14 illustrate the converge curves 

for CEC05 and CEC08. Impressively, for CEC05, ERA evolves most quickly in the beginning generations and finally 

gives the best mean solution of 1.152216958, which is quite close to the known global optimum of 1.

STD 0.004691204 0.063901687 21.70671343 192.3434718 2.804045367

MFE 30000 30000 30000 30187.13333 30044.2

CEC10 Best 20.14320415 20.24340503 20.12140073 20.09700221 20.14872943

Worst 20.57898412 20.52293164 20.59178469 20.77386591 20.49628839

Mean 20.42696562 20.40786804 20.42908964 20.60276541 20.34605205

STD 0.082810151 0.073689655 0.085669202 0.131641593 0.072081928

MFE 30000 30000 30000 30155.63333 30027.6

FMR 2.40 2.50 3.50 5.00 1.50

Rank 2 3 4 5 1

Table 6

The -values of Wilcoxon rank sum test (WRST) for ten benchmark functions of CEC-C06 2019.

ID ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

CEC01 1.33668E-05 3.68973E-11 6.72195E-10 3.01986E-11

CEC02 2.36384E-12 6.31878E-12 3.01986E-11 3.01986E-11

CEC03 0.065461305 1.01761E-05 1.77301E-09 3.01986E-11

CEC04 0.053685253 0.004856016 3.01986E-11 3.01986E-11

CEC05 8.99341E-11 3.01986E-11 3.01986E-11 3.01986E-11

CEC06 0.000212646 0.002156638 0.001370333 9.91863E-11

CEC07 1.09069E-05 0.005322078 4.7445E-06 2.37147E-10

CEC08 3.01986E-11 7.38908E-11 4.99795E-09 3.01986E-11

CEC09 3.01986E-11 4.19968E-10 3.68973E-11 3.01986E-11

CEC10 5.60728E-05 0.00185748 3.59234E-05 7.38029E-10

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

Fig. 12



Next, the detailed investigation is then carried out for CEC02. Fig. 15 shows that ERA converges to a similar solution 

to Rao-1, Rao-2, and Rao-3. In addition, ERA also gives similar curves for two other benchmarks: CEC04 and 

CEC09, as illustrated in Figs. 16 and 17.

Convergence analysis for CEC01.

Fig. 13

Convergence analysis for CEC05.

Fig. 14

Convergence analysis for CEC08.

Fig. 15



Convergence analysis for CEC02.

Fig. 16

Convergence analysis for CEC04.

Fig. 17



The results of FMR, WRST, and convergence curves above indicate that ERA is generally better than all the 

competitors in handling the effects of shift and rotation. It can be achieved since ERA is designed with two schemes: 

two sub-populations and evolutionary operators. Besides, it is also equipped with a fitness-based adaptation scheme to 

dynamically tune the three sensitive parameters: , , and  throughout the evolution process, which effectively 

controls the exploration and exploitation balance in searching for the global optimum solution. A detailed investigation 

will be provided in .

3.5 Evaluation on real world problems

Finally, ERA is evaluated using the global trajectory optimization problems (GTOP), which European Space Agency 

provides. Here, five real-world problems: Cassini1, GTOC1, Messenger, Sagas, and Cassini2 are used as the 

benchmarks to examine its capability to tackle the constrained problems. Here, the four cases: Cassini1, Messenger, 

Sagas, and Cassini2 are the minimization problems while GTOC1 is a maximization. Here, the summary of those five 

problems is given briefly; the more detailed descriptions and their Matlab codes can be seen in [31,33,34].

As described in [31], Cassini1 is a mission of multiple gravity assist (MGA) without the possibility of using deep space 

manouvres, which is related to the Cassini spacecraft trajectory design problem. The objective is to minimize the total 

delta velocity  accumulated during the mission with some given constraints, where the planetary fly-by sequence is 

Earth-Venus-Venus-Earth-Jupiter-Saturn. It has six dimensions with a known global minimum solution of 4.93 km/sec.

GTOC1 is also an MGA problem, where the objective is to maximize the change in the semi-major axis of the asteroid 

orbit following an anaelastic impact of the spacecraft with the asteroid under several given constraints. It has 8 

dimensions and the known global maximum is  kg km /s . In this paper, GTOC1 is converted into a 

minimization problem by modifying the objective function to be  to make it the same as all the 

other problems and simpler in the further evaluation.

Furthermore, Messenger, Sagas, and Cassini2 are the MGA problems with the possibility of using deep space 

manouvres (MGA-1DSM). The objective of Messenger is to minimize the total delta velocity . It has 18 

dimensions, and the global minimum solution is 8.70257 km/sec. Meanwhile, the objective of Sagas is to minimize the 

overall mission length of fly-by Jupiter and reach 50AU. It is a 12-dimensional problem with a global minimum of 

18.1923 years. Finally, Cassini2 is similar to Cassini1, but it is a bigger 22-dimensional problem with much higher 

complexity. The known best solution is 8.92401 km/sec.

Convergence analysis for CEC09.
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In the five real-world problems, ERA is also compared with the four other algorithms in their best performances using 

the parameter settings described in . All algorithms are run 30 times with 200,000 function evaluations each 

as used in [31]. In addition, both FMR and WRST with the -values are also provided to confirm the significance of 

their performance. The experimental results illustrated in Table 7 show that ERA outperforms the competitors for three 

out of five problems. Hence, the Friedman mean rank places ERA in the first rank with the lowest FMR of 1.80. 

Unfortunately, the Wilcoxon rank-sum test illustrated in Table 8 indicates that ERA significantly outperforms (with -

values of less than 0.05) some of the competitors. It is slightly (not significantly) better than Rao-1, Rao-2, and Rao-3 

for Cassini1, GTOC1, and Sagas, respectively.

Section 3.2

Table 7

Comparison of Rao-1, Rao-2, Rao-3, FA-CL, and ERA [Instruction: "for global" --> "for five global"]for global trajectory 

optimization problems.

Problem
MetricRao-1Rao-2Rao-3FA-

CLERAMetric
Rao-1 Rao-2 Rao-3 FA-CL ERA

Cassini1 Best 5.303768392 4.936855136 5.61179549 7.074851303 5.612797557

Worst 20.07805387 25.93297419 15.77360635 26.20831412 14.83107214

Mean 11.87916323 12.12477947 12.56694735 16.6899857 10.61999692

STD 3.554957586 3.64432772 2.23350672 4.840145141 2.876504936

MFE 200000 200000 200000 200187.4333 200044.6

GTOC1 Best 631827.7829 458914.6802 376896.2971 1411461.987 710462.7745

Worst 1548886.166 1551541.426 1536925.137 1569631.301 1311152.824

Mean 1147746.121 1093465.404 1051211.872 1524073.714 956084.4087

STD 233788.8767 331123.7832 266223.3551 43045.94967 136868.8532

MFE 200000 200000 200000 200124.6333 200049.6

Messenger Best 12.41560806 11.27514945 11.99302003 20.78291121 14.33306793

Worst 25.50492428 20.425443 22.54997489 28.24295896 20.46142743

Mean 18.35040915 14.97590782 16.61688953 25.51273265 16.37566883

STD 3.328431397 2.476903152 2.802312585 2.076873921 1.412144879

MFE 200000 200000 200000 200136.7 200047.8

Sagas Best 76.02938156 322.8420001 246.9977338 1267.982722 504.8182077

Worst 1615.462402 3734.488398 2310.454904 2319.048595 973.1650916

Mean 1024.564265 1202.784813 1017.331876 1722.402349 927.9858521

STD 345.5888343 619.2934569 310.6547919 205.0753697 99.79849535

MFE 200000 200000 200000 200206.9 200045.6

Cassini2 Best 10.62971719 11.03729327 15.93387459 32.97381024 21.03860384

Worst 44.68073676 36.96644582 32.11412822 47.76452256 30.01962572

Mean 25.0919048 23.93646566 25.58562866 40.28520967 26.03675587

STD 8.783109087 6.801655034 3.476676083 4.082917564 2.049424528

MFE 200000 200000 200000 200088.5667 200036.6

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.



Furthermore, the detailed investigations are then discussed by illustrating the convergence curves of ERA and the 

competitors. Fig. 18 illustrates the evolution of all algorithms until to the optimum solution for [Instruction: Please 

update "CEC01" --> "Cassini1"]CEC01. In this case, ERA converges to a better solution than the other algorithms. 

Like all the competitors, ERA evolves quickly in the beginning generations and gets stagnation. In addition, ERA also 

gives similar curves for GTOC1 and Sagas, as illustrated in Figs. 19 and 21. However, for GTOC1, ERA reaches a 

much better solution.

FMR 3.00 2.40 2.80 5.00 1.80

Rank 4 2 3 5 1

Table 8

The -values of Wilcoxon rank sum test (WRST) for five global trajectory optimization problems.

Problem ERA vs Rao-1 ERA vs Rao-2 ERA vs Rao-3 ERA vs FA-CL

Cassini1 0.318304227 0.072445596 0.00033679 8.1975E-07

GTOC1 0.000356384 0.108689773 0.02812867 3.01986E-11

Messenger 0.005084222 0.000691252 0.437641335 3.01986E-11

Sagas 0.022360148 0.000168132 0.111986872 3.01986E-11

Cassini2 0.332854692 0.008314609 0.529782491 3.01986E-11

i The table layout displayed in this section is not how it will appear in the final version. The representation below is solely 

purposed for providing corrections to the table. To preview the actual presentation of the table, please view the Proof.

Fig. 18

Convergence analysis for Cassini1.

Fig. 19



For both Messenger and Cassini2 problems, ERA gives worse convergence curves than the Rao algorithms. Fig. 20

 informs that, in the beginning, ERA gives the same converge curve as the Rao-2, but it gets stuck after half of the

generations while Rao-2 keeps evolving and reaches a little better solution. Meanwhile, Fig. 22 shows that ERA

evolves quickly in the early generations but finally converges to a slightly worse solution than the three Rao algorithms.

Convergence analysis for GTOC1.

Fig. 20

Convergence analysis for Messenger[Instruction: Please update "messenger" --> "Messenger" since it is a named-entity for one of the 

real-world global trajectory optimization problems.]messenger.

Fig. 21

Convergence analysis for Sagas.

Fig. 22



However, those results of FMR, WRST, and convergence curves inform that ERA is better than the competitors in 

tackling the constrained real-world problems. It can be implied that the two proposed schemes: two sub-populations 

and evolutionary operators, as well as the introduced adaptation procedure, effectively balance the exploration and 

exploitation strategies. A detailed investigation regarding the adaptation scheme will be provided in .

3.6 Investigation on fitness-based adaptation scheme

The proposed fitness-based adaptation scheme is evaluated here using some benchmarks to see its ability to control the 

exploration-exploitation balance. First, two classic benchmarks (with ID = 1 and 7) are selected as the representative 

30-dimensional unimodal functions. Fig. 23a illustrates that, for the Sphere function (ID = 1) that has only one global 

optimum, ERA converges quite fast. It can be achieved since ERA works in an exploration manner in the beginning 

generations and then quickly changes into an exploitation fashion, where the three parameters , , and  reach around 

the maximum values of 0.9, 0.9, and 0.5, respectively, as shown in Fig. 23b. Meanwhile, Fig. 23c illustrates that, for 

the Quartic function (with ID = 7) having many noises, ERA converges more slowly and gets a stagnation. In this case, 

ERA works in an exploration strategy throughout the evolution, where  tends to go to the minimum value of 0.1 but  

and  reach the maximum values of 0.9 and 0.5, respectively, as shown in Fig. 23d.

Next, two classic benchmarks with ID = 8 and 10 are selected as the representative 30-dimensional multimodal 

functions. Fig. 24a illustrates that, for the Schwefel function (ID = 8) having many global optimum solutions, ERA 

evolves quickly in early generations but finally gets stuck on a local optimum. Here, ERA works in an exploration 

Convergence analysis for Cassini2.

Section 3.6

Fig. 23

Convergence and adaptation curves for 30-dimensional unimodal benchmark functions with ID = 1 and 7.



strategy throughout the evolution, where  tends to go around the minimum value but  and  on the maximum values, 

as shown in Fig. 24b. Meanwhile, Fig. 24c illustrates that, for the Ackley function (ID = 10) that also has many global 

optimum solutions, ERA converges quickly and also gets a stagnation. In this case, ERA tends to work in an 

exploitation strategy throughout the evolution, where  is on the maximum value, but  and  tends on the medium 

values, as shown in Fig. 24d.

Two classic benchmarks with ID = 20 and 21 are then chosen as the representative low-dimensional multimodal 

functions. Fig. 25a illustrates that, for the function of Hartman 6 (ID = 20) with many global optima, ERA converges 

quite fast to the global optimum. It can be seen that ERA works in an exploration-exploitation balance strategy 

throughout the evolution, where  is fluctuating between the minimum and the medium values while  and  are 

around the maximum values, as shown in Fig. 25b. Meanwhile, Fig. 25c illustrates that, for the function of Shekel 5 

(ID = 21), ERA converges quickly to the global optimum. It tends to work in an exploration strategy throughout the 

evolution since Shekel 5 has a broad flat area, where  is around the minimum value, but  and  tends on the 

maximum values, as shown in Fig. 25d.

Fig. 24

Convergence and adaptation curves for 30-dimensional multimodal benchmark functions with ID = 8 and 10.

Fig. 25



Two benchmarks of CEC01 and CEC05 are then chosen as the representative functions without and with both shifting

and rotation, respectively. Fig. 26a illustrates that, for the function without shifting and rotation, ERA evolves slowly.

Unfortunately, it gets stuck for some generations and converges to a solution far from the global optimum. It can be

seen that ERA works in an exploration-exploitation balance strategy throughout the evolution, where  is fluctuating 

between the minimum and the medium values while  and  are around the maximum values, as shown in Fig. 26b. 

Meanwhile, Fig. 26c illustrates that, for the shifted and rotated function, ERA converges quickly to a solution near the

global optimum of 1. It works dynamically in exploration and exploitation strategy during the evolution, where  is 

around the medium value, but  and  tends on the maximum values, as shown in Fig. 26d.

Convergence and adaptation curves for low-dimensional multimodal benchmark functions with ID = 20 and 21.

Fig. 26



Finally, both Cassini1 and Messenger are selected as the representative of the real-world problems. Fig. 27a illustrates 

that ERA evolves quickly in the beginning generations, but it gets stuck and converges to a solution far from the global 

optimum. It can be seen that ERA tends to work in an exploration manner throughout the evolution, where  is on the 

minimum value while  and  are around the maximum values, as shown in Fig. 27b. Meanwhile, Fig. 27c shows that 

ERA evolves slowly and converges to a solution near the global optimum. It works dynamically in exploration and 

exploitation strategy during the evolution, where  is fluctuating between the minimum and the medium values, but  

and  tends on the maximum values, as shown in Fig. 27d.

Convergence and adaptation curves for CEC01 and CEC05.

Fig. 27



The convergence and adaptation curves above prove that the proposed adaptation scheme effectively controls the 

exploration and exploitation balance. This scheme makes ERA can handle many types of benchmark functions: 

unimodal, multimodal, shifted, rotated, and also real-world problems.

4 Conclusions

The proposed evolutionary Rao algorithm (ERA) works very well based on two additional schemes: splitting the 

population into two subpopulations based on their qualities: high and low, with a proper portion adaptively during the 

evolution, and exploiting two evolutionary operators: crossover and mutation. The evaluations of twenty-three classic 

benchmark functions and ten CEC-C06 2019 benchmarks show that it significantly outperforms all the competitors: 

Rao-1, Rao-2, Rao-3, and FA-CL, where it reaches the Friedman mean rank of 1.52 and 1.50, respectively, with the -

values of Wilcoxon rank-sum test of less than 0.05 for most of the benchmarks. Examining the five real-world global 

trajectory optimization problems inform that ERA gives significant performances only for some of the competitors. 

Detailed investigations prove that all the proposed schemes work well as they are designed and make ERA effectively 

control the exploration and exploitation balance. All the proposed schemes make ERA able to handle most of the 

benchmark functions with various types: unimodal, multimodal, shifted, rotated, and also real-world problems. 

However, in the future, a new advanced adaptation scheme to update the population size dynamically throughout the 

evolutionary process as well as a better mutation scheme will be created to improve the performance of ERA. Besides, 

it will be comprehensively examined using more challenging benchmarks.
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Highlights: 



• An evolutionary Rao algorithm (ERA) is proposed to enhance the three state-of-the-art metaheuristic Rao algorithms by 

introducing two new schemes.

• The population is split into two subpopulations: high- and low-quality individuals to control searching strategy.

• Two evolutionary operators: crossover and mutation operators are incorporated to give the exploitation and exploration 

strategies.

• A fitness-based adaptation procedure is introduced to dynamically tune the three sensitive parameters to balance the 

exploitation and exploration.

• Comprehensive examinations are performed using 38 benchmarks: 23 classic, 10 CEC-C06 2019, and 5 global trajectory 

optimization problems.
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